Raman study of magnetic excitations and magnetoelastic coupling in α-SrCr₂O₄

Michael E. Valentine, Seyed Koohpayeh, Martin Mourigal,* Tyrel M. McQueen, Collin Broholm, and Natalia Drichko[†] Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

Siân E. Dutton[‡] and Robert J. Cava

Institute for Quantum Matter and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Turan Birol

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

Hena Das and Craig J. Fennie

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA (Received 4 April 2014; revised manuscript received 22 January 2015; published 13 April 2015)

Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magnetoelastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet α -SrCr₂O₄, which develops helical magnetic order below 43 K. Temperature-dependent phonon spectra are compared to predictions from density functional theory calculations which allows us to assign the observed modes and identify weak effects arising from coupled lattice and magnetic degrees of freedom. Raman scattering associated with two-magnon excitations is observed at 20 and 40 meV. These energies are in general agreement with our *ab initio* calculations of exchange interactions and earlier theoretical predictions of the two-magnon Raman response of triangular-lattice antiferromagnets. The temperature dependence of the two-magnon excitations indicates that spin correlations persist well above the Néel temperature.

DOI: 10.1103/PhysRevB.91.144411 PACS number(s): 78.30.Hv, 75.50.Ee, 75.30.-m, 71.15.Mb

I. INTRODUCTION

The triangular-lattice Heisenberg antiferromagnet is a central model in frustrated magnetism. The theoretically established ground state has long-range magnetic order for any spin (including S=1/2), with moments ordered in a coplanar 120° structure [1–3]. For sufficiently large S, the magnetic excitation spectrum is well captured by spin-wave theory with strong magnon interactions due to the noncollinear character of the magnetic order [4–7].

While numerous quasi-two-dimensional triangular-lattice materials are known, their ground-state properties and magnetic excitations are often profoundly modified by exchange anisotropies and interactions beyond the nearest-neighbor Heisenberg model. Examples include the distorted triangular geometry in Cs₂CuCl₄ [8], spin-space anisotropy in Ba₃CoSb₂O₉ [9,10], further neighbor exchange interactions in CuCrO₂ [11] and LuMnO₃ [12,13], and delocalized spins in κ-(BEDT-TTF)₂Cu₂(CN)₃ [14] and LiZn₂Mo₃O₈ [15,16].

 α -CaCr₂O₄ and α -SrCr₂O₄ belong to yet another family of triangular-lattice Heisenberg antiferromagnets. Their orthorhombic crystal structures comprise two inequivalent Cr³⁺ sites that form distorted-triangular layers of S=3/2 ions in the bc plane of the Pmmn space group [17,18]. Their low-temperature properties attracted attention due to the

development of an incommensurate helical magnetic order below $T_{\rm N}\approx 43$ K [19–21], multiferroic behavior [22,23], and unconventional spin dynamics [24–26]. In α -SrCr₂O₄, nonmonotonic changes in lattice parameters were observed around $T\approx 100$ K by synchrotron x-ray powder diffraction [21], and a small electric polarization ($P\leqslant 0.4~\mu{\rm Cm}^{-2}$) was detected below $T_{\rm N}$ under a poling electric field [23]. Symmetry analysis for the currently accepted nuclear and spin structures indicates linear magnetoelectric effects are forbidden while quadratic terms are allowed [19,22]. The lattice and spin dynamics of α -SrCr₂O₄ are thus of particular interest to search for possible magnetovibrational effects and lattice distortions beyond the reported paramagnetic Pmmn space group.

In this work, we present comprehensive Raman scattering results from $\alpha\text{-SrCr}_2O_4$ single crystals and address the interplay between lattice dynamics and magnetism. Raman scattering is a valuable tool in studies of frustrated magnetism due to its sensitivity to local structure and symmetry and to magnetic exchange interactions through optical phonons and two-magnon scattering [27], respectively. In some cases, Raman scattering has proved more sensitive to lattice distortions than synchrotron x-ray diffraction measurements [28,29], and thus it is well suited to reveal the effects of weak magnetoelastic coupling.

To interpret our results, we performed density functional theory (DFT) calculations that provide theoretical values for the phonon frequencies and their corresponding eigenvectors and for the magnetic exchange interactions. This comparison allows assignment of spectral features to specific phonons and identification of small lattice distortions that precede magnetic ordering by following the temperature dependence of the Raman spectra. Furthermore, using the magnetic exchange

^{*}Present Address: School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.

[†]Corresponding author: drichko@jhu.edu

[‡]Present Address: Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.

interactions obtained *ab initio*, we compared the observed magnetic excitation spectrum with theoretical predictions for the magnetic Raman response of distorted triangular-lattice antiferromagnets [30–32].

This paper is organized as follows. Section II contains technical details associated with our single-crystal synthesis, Raman scattering measurements, and DFT calculations. Section III discusses the lattice dynamics of α -SrCr₂O₄ and contains a comparison of the observed phonon Raman spectra with DFT results. Section IV presents our magnetic Raman scattering results along with *ab initio* calculations of the nearest-neighbor magnetic exchange interactions in α -SrCr₂O₄.

II. EXPERIMENTAL AND THEORETICAL METHODS

A. Crystal growth and sample preparation

Stoichiometric amounts of SrCO₃ (Alfa Aesar, 99.99% purity) and Cr₂O₃ (Alfa Aesar, 99.97% purity) were thoroughly ground together and then synthesized under an atmosphere of 95% Ar + 5% H_2 at 1300 °C for 10 h. The powder was then sealed into a rubber tube, evacuated using a vacuum pump, and compacted into a rod 6 mm in diameter and 70 mm in length using a hydraulic press under an isostatic pressure of 70 MPa. After removal from the rubber tube, the rods were sintered at 1500 °C for 12 h in a 1-bar static argon atmosphere. α-SrCr₂O₄ single crystals of approximately 4 mm in diameter and 50 mm in length were grown from the feed rods in a four mirror optical floating zone furnace (Crystal Systems, FZ-T-12000-X-VPO-PC) with four 3-kW xenon lamps. Growths were carried out under 1 bar of static high purity argon at a growth rate of 10 mm/h with rotation rates of 20 rpm for the growing crystal and 3 rpm for the feed rod. Powder x-ray diffraction data taken from the crushed single crystals was consistent with the structure of pure α -SrCr₂O₄.

We used x-ray Laue back reflection to orient several of the grown single crystals for Raman scattering measurements. The first set of oriented crystals was cut using a diamond saw and cleaved to obtain flat bc plane surfaces (triangular lattice) of high optical quality. Note that the orthorhombic structure of α -SrCr₂O₄ stems from the Sr²⁺ positions and the resulting small displacement of the first Cr³⁺ site away from the higher symmetry position which corresponds to an undistorted triangular lattice. As a consequence, the bccut contains three distinct orthorhombic domains for which the **b** and **c** axes are rotated by $\pm 60^{\circ}$ with respect to that of a reference domain which means it was not possible to distinguish b from c during crystal alignment. A second set of oriented crystals were cut to obtain flat ab plane and ac plane surfaces. Due to the macroscopically indistinguishable **b** and **c** axes, these cuts correspond to a mixture of ab and ac orientations designated by ab + ac in the following.

B. Raman measurements

Raman scattering spectra were measured in micro-Raman and macro-Raman configurations using a Jobin-Yvon T64000 triple monochromator Raman spectrometer. Micro-Raman spectra of $\alpha\text{-SrCr}_2O_4$ were measured using an Olympus microscope coupled to the spectrometer with a laser probe

diameter of approximately 2 μ m for the spectral range from 100 cm⁻¹ (12 meV) to 650 cm⁻¹ (81 meV) with a resolution of 2 cm⁻¹ (0.25 meV). For macro-Raman scattering measurements in the 50 cm⁻¹ (2.5 meV) to 650 cm⁻¹ (81 meV) spectral range, we used collecting optics coupled with the macrochamber of the same spectrometer with the diameter of the probe about 50 μ m. The 514.5-nm line of a Spectra-Physics Ar⁺-Kr⁺ laser was used for excitation light.

For low temperature Raman measurements, the crystals were mounted on the sample holder of a Janis ST-300 ⁴He flow cryostat using silver paint. The temperature of the sample was estimated by comparing intensities of Stokes and anti-Stokes Raman spectra at 300 and 250 K. For micro-Raman measurements 1.0 mW of laser power was used which led to heating of the sample by approximately 20 K. This power was reduced to reach lower temperatures. Macro-Raman measurements used 10 mW of laser power resulting in approximately 10 K of heating. All Raman spectra were corrected for Bose-Einstein temperature effects.

Measurements were done in a backscattering geometry with e_i (electric field vector of the incident light) and e_s (electric field vector of the scattered light) laying in the bc plane (xx and xy polarizations) for temperatures ranging from 300 to 14 K and with e_i and e_s in the ab+ac plane (zz and xz+yz polarizations) at room temperature. While the bc crystal surface was very high quality, the ab+ac surface was not ideal which reduced the intensity of the corresponding spectra and lead to leakage between the zz and xz+yz polarizations. With the size of structural domains within the bc plane of approximately 25–50 μ m in each direction, the micro-Raman measurements with a probe of 2 μ m diameter allowed measurements to be performed for a single domain in the bc plane.

Additionally, the spectra were measured using both 514.5-and 488.0-nm excitation lines of a Coherent Ar⁺ laser with a Jobin-Yvon U1000 double monochromator Raman spectrometer equipped with a photomultiplier tube detector with resolution from 3 cm⁻¹ (0.4 meV) to 10 cm⁻¹ (1.2 meV). The sample was maintained at temperatures between 300 and 16 K using a custom built Janis cold finger ⁴He cryostat with the sample fixed on the cold finger by silver paint.

C. Density functional theory calculations

We used Kohn-Sham DFT as implemented in the Vienna Ab initio Simulation Package (VASP) code [33,34]. A $4 \times 8 \times 8$ k-point grid and a 500-eV energy cutoff were used to reach good convergence of structural and response properties. The local-density approximation was employed to estimate the exchange-correlation part of the energy functional. Phonon frequencies were calculated using the frozen phonons methods with symmetry adapted modes. We considered only collinear magnetic structures due to computational expense and ignored spin-orbit coupling. DFT + U as developed by Liechtenstein et al. [35] was used to take into account the strong correlations associated with Cr^{3+} d orbitals. The values of the on-site Hubbard U and the intraatomic Hund's coupling used were 3.0 eV and 0.9 eV, respectively. We found that orthorhombic differences in nearest-neighbor magnetic exchange J is insensitive to U in the range from 2 to 6 eV. To determine symmetry

TABLE I.	Wyckoff	positions	and	Raman	active	vibrations	tor
α -SrCr ₂ O ₄ .							
							_

Element	Wyckoff position	Raman representation
Sr1	2b	$A_g + B_{2g} + B_{3g}$
Sr2	2a	$A_{g} + B_{2g} + B_{3g}$
Cr1	4f	$2A_g + 1B_{1g} + 2B_{2g} + 1B_{3g}$
Cr2	4c	Inactive
O1	4f	$2A_g + 1B_{1g} + 2B_{2g} + 1B_{3g}$
O2	4f	$2A_g + 1B_{1g} + 2B_{2g} + 1B_{3g}$
O3	8g	$3A_g + 3B_{1g} + 3B_{2g} + 3B_{3g}$

properties, the Isotropy Software Package [36] and the Bilbao Crystallographic Server [37–40] were used. Visualization for Electronic and Structural Analysis (VESTA) software was used for visualization and calculation of bond lengths and angles [41].

III. PHONON SPECTRUM

A. Raman active phonons

As briefly outlined in Sec. I, the orthorhombic structure of α -SrCr₂O₄ comprises edge-sharing CrO₆ octahedra organized in the bc plane of the Pmmn space group. Magnetic Cr³⁺ (S=3/2) ions form distorted triangular layers (see Fig. 4) stacked along a and separated by parallel lines of Sr²⁺ cations. A Rietveld refinement of the T=100 K neutron powder diffraction pattern yields two distinct Cr³⁺ sites per unit cell with fractional coordinates r_1 (Cr1) and r_2 (Cr2) and Wyckoff positions 4c and 4f, respectively [21]. The lattice symmetry appears preserved for temperatures below $T_N \approx 43$ K with $r_1 = (0.5049, 0.25, 0.4975)$ and $r_2 = (0.5, 0.5, 0)$ at T=12 K. The low-temperature structure thus displays four distinct nearest-neighbor Cr–Cr distances varying by less than $\leq 0.5\%$ around the average distance $\bar{d} = 2.94$ Å.

Symmetry analysis for the space-group and atomic positions of α -SrCr₂O₄ yields 36 Raman active modes, given in Table I, with Raman tensors,

$$A_{g} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix},$$

$$B_{1g} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & d \\ 0 & d & 0 \end{pmatrix}, \quad B_{2g} = \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ e & 0 & 0 \end{pmatrix}, \quad (1)$$

$$B_{3g} = \begin{pmatrix} 0 & f & 0 \\ f & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The room-temperature polarized Raman spectra of α -SrCr₂O₄ are presented in Fig. 1. As is typical for transition-metal oxides, modes below 300 cm⁻¹ are primarily associated with vibrations of the metal atoms. Phonons in the range from 400 to 650 cm⁻¹ involve oxygen vibrations of the CrO₆ octahedra. In the measurements done on the ab+ac surface we could not separate yz and xz polarizations (B_{1g} and B_{2g} modes).

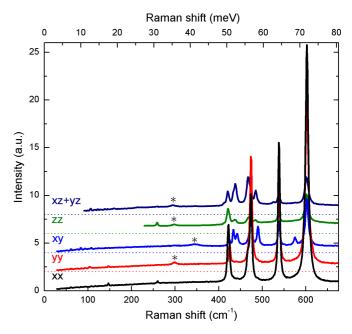


FIG. 1. (Color online) Room temperature micro-Raman spectra of α -SrCr₂O₄ in xx, yy, xy, zz, and xz + yz polarizations. Phonons showing strong spin-phonon coupling are indicated by an asterisk (*).

In Table II, we compare the experimentally observed phonon frequencies with those obtained by DFT calculations. Out of the 36 calculated Raman active modes, 28 are experimentally observed. The majority of the missing modes have B_{1g} and B_{2g} symmetry which is explained by the low signal from the ab+ac surface of the crystal. Other discrepancies are likely due to overlap of weak peaks with stronger modes. In particular, many of the oxygen vibrations are close in frequency so there is ambiguity in their assignment. Overall, the calculated phonon frequencies agree remarkably well with the experimentally obtained values. This demonstrates that DFT calculations provide a good description of the lattice dynamics of α -SrCr₂O₄ and by inference its derivatives such as α -CaCr₂O₄.

To elucidate potential magnetoelastic coupling, phonon calculations were performed imposing different collinear ferromagnetic and antiferromagnetic spin structures, and the resulting variations in phonon frequencies between these different states were assessed. Our calculations reveal that out of the 36 Raman active modes, four display a frequency shift associated with spin-phonon coupling of 15 cm⁻¹ or more; they are marked by an asterisk (*) in Table II. In our experiments, we observe three of these modes: $295 \text{ cm}^{-1} B_{2g}$ (calculated 308 cm⁻¹), 298 cm⁻¹ A_g (calculated 310 cm⁻¹), and $346 \,\mathrm{cm}^{-1} \,B_{3g}$. Indeed, these modes are the only modes that show significant changes in frequency and width approaching $T_{\rm N}$. Bands associated with these phonons show full width at half maximum (FWHM) of $> 10 \text{ cm}^{-1}$ at 300 K, significantly wider than the thermal-broadening limited FWHM of 4 cm⁻¹ found for noncoupled phonons.

B. Temperature-dependent changes in phonons

An absence of major changes in the phonon spectrum of $\alpha\text{-SrCr}_2O_4$ on cooling down to 15 K is in agreement with the

TABLE II. Comparison of the experimentally observed frequency, polarization, and intensity of phonon peaks with corresponding DFT calculations of Raman-active phonons. The experimental intensity ranges from weak ($\bullet \circ \circ$) to strong ($\bullet \bullet \bullet$). The calculations are performed in the presence of a ferromagnetic spin ordering. The major contributions to the atomic motions are listed in the last column of the table, and a more detailed account can be found in the appendix along with the dependence of the calculated phonon frequencies on U and the magnetic configurations. Calculated modes designated by an asterisk (*) show significant spin-phonon coupling. The temperature dependence of the modes marked with \blacksquare , \blacktriangledown , and \blacktriangle is presented in Fig. 3.

E	xperiment		Theory					
(cm ⁻¹)	Pol.	Int.	(cm ⁻¹)	Sym.	Atomic motions			
81	xy	• 0 0	83	B_{3g}	Sr1(y) + Sr2(y)			
102	уу	• 0 0	100	A_g	Sr1(x) + Sr2(x)			
144	xx, yy	• 0 0	145	A_g	Sr1(x) + Sr2(x)			
144	xy	• 0 0	145	B_{3g}	Sr1(y) + Sr2(y)			
163	xz + yz	• 0 0	146	B_{2g}	Sr1(z) + Sr2(z) + Cr1(z)			
			221	B_{2g}	Sr1(z) + Sr2(z)			
259	xx, zz	$\bullet \bullet \circ$	249	A_g	Cr1(z) + O2(z) + O3(y)			
			263	B_{2g}	$\operatorname{Cr1}(z) + \operatorname{O2}(xz) + \operatorname{O3}(y)$			
295	xz + yz	• 0 0	*308	B_{2g}	Cr1(x) + O1(x) + O2(x)			
298	yy, zz	• 0 0	*310	A_g	Cr1(x) + O1(x) + O2(x)			
			*372	B_{1g}	Cr1(y) + O3(z)			
346	xy	• 0 0	*373	B_{3g}	Cr1(y) + O3(xz)			
413	xz + yz	• 0 0	409	B_{2g}	O1(z) + O3(xz)			
421	xz + yz	• 0 0	424	B_{1g}	O3(yz)			
422	xx, zz	•••	413	A_g	O1(z) + O3(xyz)			
			426	B_{2g}	O2(xz) + O3(y)			
433	xy	$\bullet \bullet \circ$	426	B_{3g}	O3(yz)			
425	уу	•••	428	A_g	O2(z) + O3(y)			
434	xz + yz	• 0 0	440	B_{1g}	O1(y) + O2(y)			
438	xz + yz	• • 0	453	B_{2g}	O1(x) + O3(xy)			
442	xy	• • 0	442	B_{3g}	O1(y) + O2(y)			
■ 467	xx	• • 0	454	A_g	O1(x) + O3(xy)			
			462	B_{1g}	O2(y) + O3(x)			
			462	B_{3g}	O3(x)			
468	xz + yz	•••	463	B_{2g}	O1(z) + O2(xz) + O3(x)			
▼ 474	xx, yy	•••	469	A_g	O1(xz) + O2(xz) + O3(x)			
485	xz + yz	$\bullet \bullet \circ$	473	B_{1g}	O3(xyz)			
490	xy	• • 0	476	B_{3g}	O3(yz)			
527	xz + yz	• 0 0	515	B_{2g}	O1(x) + O2(x) + O3(yz)			
▲ 538	xx, yy	•••	528	A_g	O1(z) + O2(x) + O3(yz)			
			569	B_{1g}	O1(y) + O2(y)			
575	xy	• 0 0	571	B_{3g}	O1(y) + O2(y)			
	-		580	A_g	O1(xz) + O2(z) + O3(z)			
			583	B_{2g}	O1(xz) + O2(x) + O3(xz)			
			592	B_{2g}^{-3}	O1(z) + O2(xz) + O3(yz)			
602	xx, yy	•••	600	A_g	O1(x) + O2(xz) + O3(x)			

observation of the *Pmmn* space group in the whole studied temperature range by x-ray and neutron powder diffraction [21]. In Fig. 2, we report the temperature dependence of the α -SrCr₂O₄ unpolarized Raman spectrum upon cooling from 290 to 15 K. The largest changes with temperature, especially around $T_{\rm N}$, are expected from the phonons which show magnetoelastic coupling. According to the fits shown in Fig. 2(c), the 298 cm⁻¹ A_g and 346 cm⁻¹ B_{3g} phonons

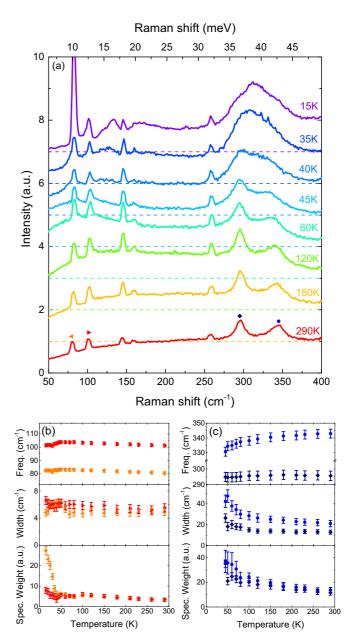


FIG. 2. (Color online) (a) Unpolarized Raman spectra of α -SrCr₂O₄ at selected temperatures between 290 and 15 K below 400 cm⁻¹. Spectra are shifted along the y axis for clarity. y=0 is shown for each spectrum by a dashed line. On cooling down from 290 K, the magnetic background starts to increase and forms two wide features which become narrower and shift to higher frequencies below $T_{\rm N}$. (b) Temperature dependence of the frequency, width, and intensity for the 81 cm⁻¹ B_{3g} and 102 cm⁻¹ A_g phonons associated with Sr movement. (c) Temperature dependence of phonon frequency, width, and intensity for the 298 cm⁻¹ A_g and 346 cm⁻¹ B_{3g} phonons which show considerable coupling to the spin system according to the DFT calculations.

show broadening on approaching T_N , and the 346 cm⁻¹ mode shows a decrease in frequency. Both of the phonons can only be distinguished in the spectra at temperatures above T_N while below it they mix with the two-magnon feature centered at 320 cm⁻¹, discussed in further detail in Sec. IV B.

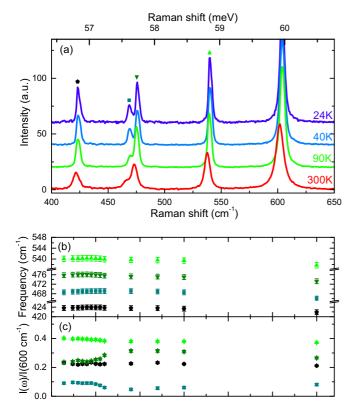


FIG. 3. (Color online) (a) Temperature dependence of the Raman spectra of α -SrCr₂O₄ in xx polarization at frequencies between 400 and 650 cm⁻¹, where oxygen-related phonons are observed. The spectra are shifted along the y axis for clarity. (b) Frequencies of selected oxygen-related phonons; see the marking symbols in (a). (c) Integrated intensities of these phonons normalized by the intensity of the 602 cm⁻¹ phonon. A redistribution of intensities occurs in the temperature range between 90 and $T_{\rm N} \approx 43$ K.

150 200 Temperature (K) 300

Along with the changes in the behavior of the phonons coupled to the spin system, we observe changes for some of the phonons which do not show substantial magnetoelastic coupling in the calculations. A dramatic increase in intensity of the 82 cm⁻¹ B_{3g} Sr phonon is observed for temperatures below T_N [Fig. 2(b)]. In addition, some changes are observed for oxygen phonons (see Fig. 3). A spectral weight redistribution occurs between the 467 and 474 cm⁻¹ A_g modes, and a weak change is also observed for the 538 cm⁻¹ A_g phonon. In Fig. 3(b), we show the temperature dependence of their integral intensities normalized by the 602 cm⁻¹ phonon. For temperatures below approximately 90 K, the 467 cm⁻¹ peak doubles in intensity relative to the 474 cm⁻¹ peak with the trend continuing until roughly $T_{\rm N} \approx 43$ K, below which the relative intensities remain constant. This behavior contrasts with an absence of changes observed for the 422 cm⁻¹ phonon, which is plotted for reference in Fig. 3(b).

The changes in the phonons which are not coupled to the magnetic system could be due to weak variation in the structural parameters with temperature. Indeed, the interplane lattice spacing *a* decreases upon cooling from 300 K before increasing weakly for temperatures below 100 K, and an inflection point is observed in the temperature dependence

of all three lattice parameters at the magnetic ordering temperature $T_{\rm N}\approx 43$ K [21]. Additionally, the weak electrical polarization observed below $T_{\rm N}$ [23] can influence the phonon intensities.

IV. MAGNETIC EXCITATIONS

A. Calculations of magnetic exchange interactions

Originating from almost structurally perfect triangular layers of S=3/2 ions, the collective magnetism of $\alpha\text{-SrCr}_2O_4$ is particularly interesting. A Curie-Weiss fit to the magnetic susceptibility for temperatures above T=150 K indicates overall strong antiferromagnetic interactions between Cr^{3+} spins with a Weiss constant $\Theta_W \approx -596$ K [21]. Below $T_N \approx 43$ K, the onset of long-range magnetic order is indicated by a sharp λ anomaly in the specific heat [21,23,42] and the concomitant appearance of an incommensurate magnetic Bragg peak in neutron diffraction indexed by the propagation vector $\mathbf{k}=(0,0.322,0)$ [21]. The magnetic structure is an incommensurate *spin helix* with spins in the ac plane. This is distinct from the 120° ground state of the nearest-neighbor triangular-lattice Heisenberg antiferromagnet.

To understand the microscopic origin of these magnetic properties, we examined the magnetic exchange interactions of α -SrCr₂O₄ using DFT calculations. In our treatment, exchange constants are obtained by calculating the total energy for different collinear spin configurations and fitting the results to an Ising model. The lattice was allowed to relax while preserving the overall *Pmmn* symmetry. The results, presented in Table III, are compared with experimental results for α -CaCr₂O₄.

Although the Cr³⁺ ions form an almost perfect triangular lattice in terms of their spacings, the two inequivalent Cr³⁺ sites lead to four different magnetic exchange interactions, labeled J_1 to J_4 in Fig. 4. The DFT results indicate very strong variations in the exchange constants, with $\Delta J_i/\bar{J} \ge 25\%$, even though corresponding Cr-Cr distances, vary by less than 0.5%. Both direct cation-cation exchange interactions and superexchange through oxygen contribute to these exchange interactions. It appears that the different Cr-Cr distances cannot alone explain the large differences in exchange constants, and this suggests contributions from the Cr-O-Cr superexchange play a role. For example, the value of J_2 is the largest where the Cr-Cr distance is second largest. The corresponding angles in the Cr-O-Cr superexchange paths are close to 90° where superexchange interactions are very sensitive to bond angles. Interestingly, the same tendency of the large differences between J's for a nearly triangular lattice is observed in α -CaCr₂O₄; see the experimental values in Table III.

Overall, the theoretical estimate for the strength of magnetic interactions in α -SrCr₂O₄ corresponds to a Weiss temperature of $\Theta_W = -583$ K ($J_{av} = 5.0$ meV) which compares remarkably well with the experimental value $\Theta_W = -596$ K. While this agreement might be coincidental given the well-known effects of neglecting higher order terms in the high temperature expansion, we show below that the calculated J_{av} is also consistent with the two-magnon spectrum observed experimentally by Raman scattering.

TABLE III. Comparison of the experimental and calculated Cr–Cr distances, Cr–O–Cr bond angles, and resulting nearest-neighbor magnetic exchange interactions J_i for α -SrCr₂O₄ and α -CaCr₂O₄. Theoretical magnetic exchange interactions are from *ab initio* calculations. Definitions of the J_i 's are given in Fig. 4. Bond angles for α -CaCr₂O₄ were determined from Ref. [20] using neutron powder diffraction measurements for atomic positions and synchrotron x-ray diffraction measurements for lattice parameters.

				α-5	α -CaCr ₂ O ₄					
			Experiment	[21] T = 12 K	Theo	ory (This wo	rk)	Experiment [20,24] $T \leq 5 \text{ K}$		
	Direct exchange chromiums	Superexchange oxygens	Distance (Å)	Bond angle (°)	Distance (Å)	Bond angle (°)	J (meV)	Distance (Å)	Bond angle (°)	J (meV)
$\overline{J_1}$	Cr2-Cr2	O1 O2	2.936	94.7 95.1	2.936	95.5 96.3	4.22	2.907	94.5 94.7	8.6
J_2	Cr1-Cr1	O3 O3	2.938	93.5 93.5	2.940	94.2 94.2	7.15	2.911	92.7 92.7	9.1
J_3	Cr1-Cr2	O3 O1	2.932	92.4 95.4	2.927	92.7 96.0	5.70	2.889	91.1 94.1	11.8
J_4	Cr1–Cr2	O3 O2	2.954	94.7 96.6	2.959	95.3 97.0	3.02	2.939	94.1 95.9	5.8

B. Magnetic Raman scattering

In addition to phonons, below $400~\rm cm^{-1}$ in the low-temperature spectra of α -SrCr₂O₄ measured in the bc plane (see Fig. 2) we observe two broad features. At temperatures below $T_{\rm N}$, these two broad peaks are centered at \approx 20 meV (160 cm⁻¹) and \approx 40 meV (320 cm⁻¹). The 40-meV peak is relatively narrow and asymmetrically skewed towards higher frequencies, while the 20-meV peak is broader and

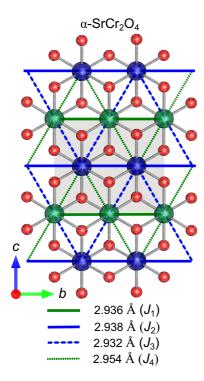


FIG. 4. (Color online) The bc plane of α -SrCr₂O₄ which consists of Cr³⁺ and O²⁻ ions. Blue and green spheres denote the two different Cr³⁺ sites and red spheres denote O²⁻ anions. There are four inequivalent Cr–Cr nearest-neighbor distances, leading to the differing magnetic exchange constants J_i marked in the figure. The values shown for the Cr–Cr distances were determined by neutron powder diffraction measurements at 12 K [21].

weaker. On increasing the temperature above $T_{\rm N}$, both features broaden and shift to lower energies of approximately 12 meV (100 cm⁻¹) and 38 mW (310 cm⁻¹), respectively. These features are shown in greater detail in Fig. 5 in the spectra with the major phonon features extracted for temperatures below ($T=15~{\rm K}$) and above ($T=80~{\rm K}$) $T_{\rm N}\approx43~{\rm K}$. The broad and asymmetric lineshape, energy, and temperature dependence of these two bands suggest they originate from two-magnon Raman scattering.

Our experimental results can be compared with theoretical predictions for Raman excitations of triangular-lattice antiferromagnets based on the exchange scattering process [27] which is generally described by the operator $\hat{R} = S_i J_{ii} S_i (e_i \cdot$ δ_{ij})($e_s \cdot \delta_{ij}$) where δ_{ij} is the vector connecting neighboring sites i and j from different magnetic sublattices, e_i and e_s are the electric field vectors of the incident and scattered radiation, S_i and S_j are spin operators for the two different sites, and J_{ij} is the magnetic exchange interaction. A crude estimation of the position of a two-magnon excitation in a collinear antiferromagnet is given by J(2Sz-1), where S is the spin value and z is the coordination number [43], which yields 17 J for a S = 3/2 triangular lattice. Using the calculated $J_{av} = 5.0$ meV value for α -SrCr₂O₄, the position of the observed magnetic excitations corresponds to $\approx 4.0J$ and $\approx 8.0 J$, much lower than the prediction for a collinear antiferromagnet.

The above discrepancy can be attributed to the noncollinear character of the magnetic order in $\alpha\text{-SrCr}_2O_4$. Calculations of the Raman response for a triangular-lattice antiferromagnet [30,31] predict a softening of the two-magnon excitations compared to the collinear square-lattice case. These models discuss a simple case of one magnetic lattice site per unit cell while $\alpha\text{-SrCr}_2O_4$ shows two different Cr^{3+} atoms per unit cell. Nevertheless, we consider it suitable to compare our results to these simpler models since the magnetic order observed in $\alpha\text{-SrCr}_2O_4$ is noncollinear and incommensurate with the lattice. Two prominent features are expected in the Raman spectra originating from singularities in the two-magnon density of states. Reference [31] calculates how magnetic excitations move to lower frequencies on increasing frustration

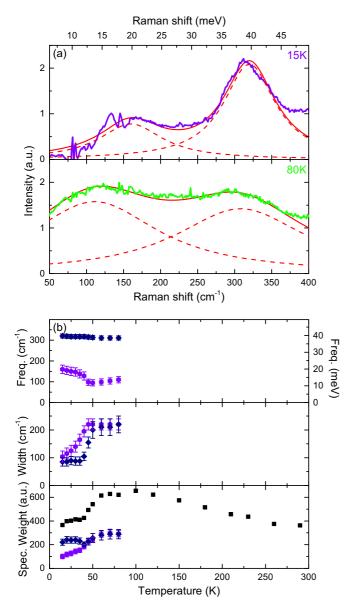


FIG. 5. (Color online) (a) Unpolarized Raman spectra of α -SrCr₂O₄ below $T_{\rm N}$ (15 K, upper panel) and above $T_{\rm N}$ (80 K, lower panel) with phonons extracted. Fit of the two-magnon features by Lorentzians (dashed lines) and the resulting fitting curve are shown. (b) Temperature dependence of the positions (upper panel), widths (middle panel), and spectral weights (lower panel) of the maxima of two-magnon excitations received from the fit of the spectra. The parameters are shown by diamonds (40-meV feature) and circles (20-meV feature). In the lower panel (spectral weight), black squares present the integrated intensity $\int_{50}^{400} I(\omega) d\omega$ of the total magnetic background over the frequency range from 50 to 400 cm⁻¹.

through a transformation from square to triangular lattice. In the case of a slightly distorted triangular lattice and after rescaling to S=3/2, this results in features centered around 4.5J and 6.0J. In Ref. [30], the positions of the magnetic excitations in the isotropic triangular lattice case are 4.5J and 7.2J, although smoothed by magnon-magnon interactions.

Our experimental results show that in agreement to the theoretical predictions two peaks associated with two-magnon

excitations are observed for a triangular antiferromagnet. The experimentally observed energies of the features, approximately 20 meV and 40 meV, or $4.0J_{av}$ and $8.0J_{av}$ are close to but do not exactly coincide with the theoretically predicted values. This disagreement can be explained by a simplicity of the theoretical model compared to the structure of α -SrCr₂O₄. To the best of our knowledge, magnetic Raman scattering spectra for the particular distortion of the triangular lattice relevant for α-SrCr₂O₄ have not been calculated, and there may be additional effects associated with the anisotropy. In particular, the calculations of Raman spectra for an isotropic triangular lattice in Ref. [30] predict that the lower energy feature should have a greater spectral weight. Our results in the ordered state below $T_{\rm N}$ contrast with that prediction as the high-energy 40-meV excitation is more intense and shows a distinct line shape compared to the weaker and broader 20-meV feature. Contrary to the square-lattice case where magnetic excitations are predicted to only occur in the B_{1g} and B_{2g} polarizations [44], excitations for a perfect triangular lattice are predicted to be equally intense in the A_{1g} and B_{1g} channels [30,31]. Unfortunately, the presence of different orthorhombic domains in α-SrCr₂O₄ prevents us from analyzing the polarization of the magnetic Raman

We follow the temperature dependence of the magnetic Raman scattering in α -SrCr₂O₄. To the best of our knowledge, at this point there is no published theoretical description of two-magnon scattering for triangular antiferromagnet at finite temperatures. While the real shape of the Raman spectra is defined by the two-magnon density of states [30,43], we fit both observed maxima by Lorentzian band shapes to estimate their positions, widths, and intensities [see Fig. 5(b)]. Even though the positions of the two-magnon excitations in α-SrCr₂O₄ are much lower than in nonfrustrated antiferromagnets, the temperature dependence of the features across T_N is similar to the observations for nonfrustrated three-dimensional (3D) and two-dimensional (2D) materials [43-47]. For both features associated with two-magnon excitations, the line width increases with increasing temperature above T_N , and the features shift to lower frequencies. The spectral weight of the magnetic excitations increases above $T_{\rm N}$, also following the tendency observed for collinear nonfrustrated 3D antiferromagnets [43,48]. We can follow the two bands as separate features up to $T \approx 100$ K [Fig. 5(b)]. Above $T \approx 100$ K, the spectral weight of magnetic excitations starts to decrease, and the two basic features widen to form a magnetic background which decreases further on temperature increase, but is present up to room temperature. To illustrate that we plot the spectral weight of the whole magnetic background $\int_{50}^{400} I(\omega)d\omega$ as a function of temperature in Fig. 5(b), lower panel (black squares), together with the spectral weight of the two-magnon features received from the fit. The presence of magnetic excitations in 3D collinear antiferromagnets was observed in Raman scattering up to about $4T_N$ [43]. For α -SrCr₂O₄, the persistent 2D magnetic correlations above T_N are expected given the estimated $\Theta_W = -596$ K which differs significantly from $T_{\rm N} \approx 43$ K due to frustration effects.

It is interesting to compare our magnetic Raman scattering results for α -SrCr₂O₄ to those for α -CaCr₂O₄ [25]. In the

latter compound, broad peaks at 5.5, 20, and 32 meV were observed and interpreted as two-magnon excitations. For both compounds the magnetic background increases on cooling the samples from room temperature, however, the α -CaCr₂O₄ compound does not show narrower bands and a decrease of the spectral weight of the magnetic background below T_N . The shape of the spectra below T_N is different from our results on α -SrCr₂O₄, while being similar at temperatures above T_N . At 10 K in RL polarization the data of Ref. [25] shows a broad higher-frequency 33-meV feature with a lower intensity than the low-frequency 5.5-meV peak, in agreement with calculations for the isotropic triangular lattice [30]. As a whole, the energy and line shape of the low-frequency magnetic excitations in α -SrCr₂O₄ differ more from the theoretical predictions of Refs. [30,31] than those of α -CaCr₂O₄. This could be an indication of a more pronounced variation of nearest-neighbor magnetic interactions in α-SrCr₂O₄, as suggested by Table III.

V. CONCLUSIONS

We presented an experimental Raman study of lattice and magnetic excitations in the anisotropic triangular antiferromagnet α -SrCr₂O₄ along with DFT calculations for the phonon spectra and magnetic exchange constants. The calculations show an excellent agreement with the observed phonon spectra and allow us to assign all of the observed modes. The magnetic exchange interactions obtained *ab initio* show large variations as a function of subtle changes in the nearest-neighbor Cr–Cr distances. This suggests that the Cr–O–Cr superexchange mechanism plays a significant role in the nearest-neighbor exchange interactions. The average theoretical value $J_{\rm av} = 5.0$ meV is in excellent agreement with the Weiss constant extracted from high-temperature susceptibility data.

We detected two peaks in the magnetic Raman spectrum at approximately 20 and 40 meV which are resultant from two-magnon excitations. An observation of two peaks is close to that predicted for two-magnon Raman scattering from triangular-lattice Heisenberg antiferromagnets, while their position at approximately $4.0J_{\rm av}$ and $8.0J_{\rm av}$ is near the expected theoretical energies. We observe a narrowing and high-frequency shift of the excitation below $T_{\rm N}\approx43$ K, and

both features are distinguishable up to ≈ 80 K. Coupling between magnetic and structural degrees of freedom in $\alpha\text{-SrCr}_2O_4$ is indicated by a change in the phonons close to the frequencies of the two-magnon feature at 40 meV.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with O. Tchernyshyov. Work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering under Grant No. DE-FG02-08ER46544. Work at Cornell University was supported by NSF Grant No. DMR-1056441.

APPENDIX

1. Eigendisplacements of the Raman active modes from first principles

In α -SrCr₂O₄, the four Raman active irreducible representations (irreps) at the Γ point are A_g , B_{1g} , B_{2g} , and B_{3g} with Raman tensors given in (1). In this section, we present the frequencies and eigendisplacements for each of the Raman active phonon modes. Tables IV–VII list the phonon frequencies calculated from first principles and the phonon eigendisplacements expressed in the basis of the ionic displacements shown in the corresponding Figs. 6(a)–6(d). The results presented in these tables are obtained from calculations assuming ferromagnetic ordering and a Hubbard U of 3 eV, the effects of which are discussed further in Secs. A 2 and A 3 of the appendix, respectively.

2. Dependence of Γ-point phonons on the magnetic configuration

In order to elucidate the effect of the magnetic order on the phonon frequencies, we calculated the Γ -point phonon frequencies considering ferromagnetic (FM) and the various antiferromagnetic (AFM) configurations shown in Fig. 7. The crystal structure determined from neutron powder diffraction [21] was relaxed in the FM state with the lattice vectors fixed and was then used for the phonon calculations in each of the different magnetic configurations. For calculations in the AFM configurations, the zero point forces were subtracted. The

TABLE IV. The phonon frequencies and the corresponding eigendisplacements for the Raman active irrep A_g . The dynamical matrix eigenvectors are normalized, and the eigendisplacements are given in the basis of the displacements shown in Fig. 6(a).

Frequency (cm ⁻¹)	Eigendisplacement
100	(0.066, -0.082, 0.005, -0.009, -0.017, -0.012, 0.019, 0.003, -0.001, -0.011, -0.014)
142	(-0.080, -0.070, -0.005, 0.008, 0.012, 0.018, 0.003, 0.018, -0.005, 0.005, 0.002)
249	(-0.011, 0.002, 0.119, -0.012, -0.053, -0.032, 0.071, -0.051, -0.007, -0.063, 0.011)
310	(0.010, 0.001, 0.029, 0.122, 0.001, 0.070, -0.028, 0.071, 0.000, -0.021, 0.009)
413	(-0.003, -0.001, -0.022, -0.011, -0.138, 0.031, -0.046, 0.020, 0.150, -0.085, 0.092)
428	(-0.002, 0.004, -0.057, 0.021, -0.021, 0.035, 0.154, -0.070, -0.074, -0.121, 0.016)
454	(-0.007, 0.004, -0.015, 0.012, -0.003, -0.109, -0.001, 0.062, 0.042, -0.119, -0.172)
469	(0.002, -0.008, -0.001, 0.030, 0.116, -0.106, -0.076, -0.117, 0.046, -0.048, 0.103)
528	(0.004, 0.001, 0.014, -0.047, 0.087, 0.060, -0.070, 0.102, -0.081, -0.138, 0.051)
581	(-0.004, -0.002, -0.012, 0.017, -0.137, -0.098, -0.098, -0.011, -0.148, 0.004, 0.029)
600	(0.000, -0.004, 0.005, -0.006, -0.019, 0.118, -0.117, -0.144, -0.015, -0.041, -0.108)

TABLE V. The phonon frequencies and the corresponding eigendisplacements for the Raman active irrep B_{1g} . The dynamical matrix eigenvectors are normalized, and the eigendisplacements are given in the basis of the displacements shown in Fig. 6(b).

Frequency (cm ⁻¹)	Eigendisplacement					
372	(0.113, 0.037, 0.050, -0.109, -0.039, -0.059)					
424	(-0.024, 0.040, -0.010, -0.152, 0.188, 0.023)					
440	(-0.026, -0.189, 0.130, -0.058, -0.002, -0.064)					
462	(0.040, -0.020, 0.119, 0.060, 0.052, 0.192)					
473	(-0.046, 0.039, 0.016, -0.138, -0.152, 0.110)					
569	(-0.038, 0.148, 0.169, 0.039, 0.003, -0.077)					

TABLE VI. The phonon frequencies and the corresponding eigendisplacements for the Raman active irrep B_{2g} . The dynamical matrix eigenvectors are normalized, and the eigendisplacements are given in the basis of the displacements shown in Fig. 6(c).

Frequency (cm ⁻¹)	Eigendisplacement							
146	(0.073, 0.067, -0.046, -0.029, -0.031, -0.007, -0.015, -0.009, -0.002, 0.013, -0.003)							
221	(0.075, -0.069, 0.027, -0.010, 0.031, -0.005, -0.013, -0.009, -0.033, -0.016, 0.003)							
263	(-0.015, -0.042, -0.104, -0.046, -0.061, -0.020, -0.039, -0.065, -0.018, 0.057, -0.009)							
308	(-0.006, 0.010, 0.038, 0.006, -0.028, -0.120, -0.069, -0.066, 0.001, -0.027, 0.012)							
409	(-0.001, 0.005, -0.014, 0.147, -0.047, 0.021, -0.041, -0.030, -0.147, -0.064, 0.092)							
426	(-0.001, -0.003, -0.057, 0.039, 0.152, -0.025, -0.052, 0.082, 0.064, -0.100, 0.043)							
453	(-0.003, -0.001, -0.018, -0.032, -0.026, -0.012, 0.107, -0.021, -0.054, -0.169, -0.125)							
463	(0.004, 0.005, 0.000, 0.118, 0.078, 0.019, -0.057, -0.116, 0.031, 0.039, -0.148)							
515	(0.002, 0.001, -0.014, 0.067, 0.056, -0.052, 0.111, 0.092, -0.097, 0.117, -0.042)							
583	(0.011, -0.007, -0.013, 0.086, -0.022, -0.012, 0.151, -0.088, 0.121, -0.003, 0.088)							
592	(-0.009, 0.014, 0.003, -0.098, 0.143, 0.007, 0.044, -0.128, -0.085, 0.013, 0.071)							

TABLE VII. The phonon frequencies and the corresponding eigendisplacements for the Raman active irrep B_{3g} . The dynamical matrix eigenvectors are normalized, and the eigendisplacements are given in the basis of the displacements shown in Fig. 6(d).

Frequency (cm ⁻¹)	Figandiculocament
(CIII)	Eigendisplacement
83	(0.068, -0.082, -0.003, 0.001, -0.002, 0.000, 0.019, -0.005)
149	(-0.082, -0.068, -0.009, 0.006, 0.003, 0.007, -0.003, 0.001)
373	(-0.003, -0.006, 0.113, 0.038, 0.052, -0.109, -0.036, -0.058)
426	(-0.005, 0.004, -0.019, 0.064, -0.030, -0.133, 0.195, 0.024)
442	(0.001, 0.000, 0.028, 0.181, -0.138, 0.075, -0.026, 0.043)
462	(-0.002, 0.002, -0.024, -0.010, -0.104, -0.014, -0.002, -0.223)
476	(-0.004, 0.002, 0.057, -0.046, 0.023, 0.159, 0.149, -0.040)
571	(0.003, 0.004, -0.038, 0.148, 0.169, 0.041, 0.003, -0.075)

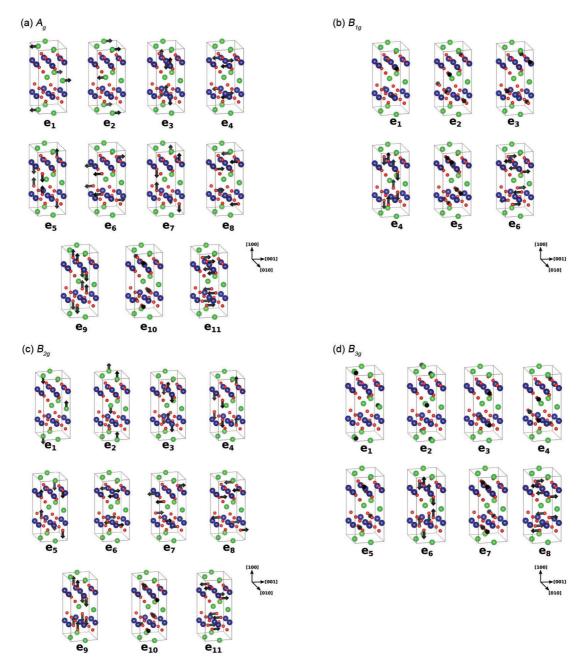


FIG. 6. (Color online) Symmetry adapted modes of the irreps A_g , B_{1g} , B_{2g} , and B_{3g} . Blue, red, and green atoms denote Cr^{3+} , O^{2-} , and Sr^{2+} ions, respectively. The ionic radii in the figure are changed for clarity.

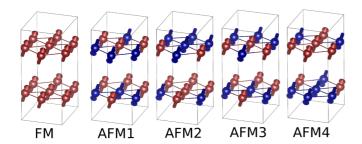


FIG. 7. (Color online) The five different magnetic configurations used to calculate the phonon frequencies. For simplicity, only the Cr^{3+} ions are included in the figure, and opposite spin Cr^{3+} ions are represented with different colors.

results for U=3 eV are presented in Table VIII. All of the optical phonon modes that showed a frequency shift of $\geqslant 15$ cm⁻¹ are in the range of 267–402 cm⁻¹ (indicated by *) which coincides with the range over which the higher-frequency magnetic excitation centered at 310 cm⁻¹ (38 meV) was observed. Of the 12 modes showing significant spin-phonon coupling, four are Raman active as discussed in Sec. III A.

3. Dependence of the spin-phonon coupling on the Hubbard ${\cal U}$ in DFT + ${\cal U}$

The value of the Hubbard U used in the DFT + U calculations presented in the main text was chosen to be 3 eV. This value has been previously shown to correctly reproduce

TABLE VIII. The 81 optical phonon frequencies on the Γ point, calculated from first principles with the frozen phonons method in cm⁻¹. The U value used for the DFT + U calculations is 3 eV. The magnetic orders refer to the states presented in Fig. 7. Phonons showing frequency shifts of \geqslant 15 cm⁻¹ for the different magnetic configurations are indicated with an asterisk (*).

Irrep		FM	AFM1	AFM2	AFM3	AFM4	Irrep		FM	AFM1	AFM2	AFM3	AFM4
$A_u (\Gamma_1^-)$	Silent	47	48	47	47	47	$A_g(\Gamma_1^+)$	Raman active	428	427	428	427	428
$B_{3u} (\Gamma_3^-)$	IR active (a)	73	73	73	72	73	$A_u(\Gamma_1^-)$	Silent	428	430	425	430	425
$B_{3g}\left(\Gamma_3^+\right)$	Raman active	83	83	83	83	83	$B_{1g}(\Gamma_2^+)$	Raman active	440	441	440	441	440
$A_g(\Gamma_1^+)$	Raman active	100	100	100	100	100	$B_{3g}(\Gamma_3^+)$	Raman active	442	443	442	443	442
$B_{2u} (\Gamma_4^-)$	IR active (b)	101	101	101	101	101	$B_{3u} (\Gamma_3^-)$	IR active (a)	451	449	450	449	450
$B_{1u} (\Gamma_2^-)$	IR active (c)	126	125	124	125	124	$B_{2g}(\Gamma_4^+)$	Raman active	453	448	450	448	450
$B_{1u} (\Gamma_2^-)$	IR active (c)	134	132	132	132	132	$A_g(\Gamma_1^+)$	Raman active	454	451	453	451	453
$B_{2u} (\Gamma_4^-)$	IR active (b)	138	138	138	138	138	$A_u(\Gamma_1^-)$	Silent	454	459	454	459	454
$A_g (\Gamma_1^+)$	Raman active	142	142	142	142	142	$B_{2u} (\Gamma_4^-)$	IR active (b)	455	460	455	460	455
$B_{2g}\left(\Gamma_4^+\right)$	Raman active	146	146	146	146	146	$B_{1u} (\Gamma_2^-)$	IR active (c)	457	456	457	456	457
$B_{3g}\left(\Gamma_3^+\right)$	Raman active	149	148	149	148	149	$B_{3g} (\Gamma_3^+)$	Raman active	462	462	462	462	462
$B_{3u} (\Gamma_3^-)$	IR active (a)	159	155	155	155	155	$B_{1g} (\Gamma_2^+)$	Raman active	462	462	461	462	461
$B_{1u} (\Gamma_2^-)$	IR active (c)	174	174	174	174	174	$B_{2g} (\Gamma_4^+)$	Raman active	463	460	460	460	460
$B_{3u} (\Gamma_3^-)$	IR active (a)	221	221	221	221	221	$B_{3u} (\Gamma_3^-)$	IR active (a)	463	463	462	463	462
$B_{2g}\left(\Gamma_4^+\right)$	Raman active	221	221	221	221	221	$A_u (\Gamma_1^-)$	Silent	465	472	470	472	470
$A_u (\Gamma_1^-)$	Silent	226	223	223	223	223	$A_g\left(\Gamma_1^+\right)$	Raman active	469	464	465	464	465
$B_{2u} (\Gamma_4^-)$	IR active (b)	239	233	233	233	233	$B_{2u} (\Gamma_4^-)$	IR active (b)	469	476	473	476	473
$A_g (\Gamma_1^+)$	Raman active	249	249	248	249	248	$B_{1g} (\Gamma_2^+)$	Raman active	473	473	475	473	475
$B_{3u} (\Gamma_3^-)$	IR active (a)	257	254	255	254	254	$B_{1u} (\Gamma_2^-)$	IR active (c)	476	472	472	472	472
$B_{1u} (\Gamma_2^-)$	IR active (c)	260	256	256	256	256	$B_{3g} (\Gamma_3^+)$	Raman active	476	478	478	478	478
$B_{2g} (\Gamma_4^+)$	Raman active	263	264	262	264	262	$B_{3u} (\Gamma_3^-)$	IR active (a)	480	483	476	483	476
$*A_u(\Gamma_1^-)$	Silent	267	248	246	248	246	$B_{1u} (\Gamma_2^-)$	IR active (c)	490	491	487	491	487
$*B_{2u}$ (Γ_4^-)	IR active (b)	268	251	249	251	250	$B_{2u} (\Gamma_4^-)$	IR active (b)	492	490	489	490	489
$*B_{2u}$ (Γ_4^-)	IR active (b)	306	287	287	287	287	$A_u (\Gamma_1^-)$	Silent	493	491	491	491	491
$*A_u(\Gamma_1^-)$	Silent	306	287	287	287	287	$B_{2g} (\Gamma_4^+)$	Raman active	515	513	515	513	515
$*B_{2g}$ (Γ_4^+)	Raman active	308	292	292	292	292	$B_{3u} (\Gamma_3^-)$	IR active (a)	517	523	517	523	517
$*A_g(\Gamma_1^+)$	Raman active	310	293	293	293	293	$B_{1u} (\Gamma_2^-)$	IR active (c)	519	526	520	526	520
$*B_{1g}(\Gamma_2^+)$	Raman active	372	303	367	303	367	$B_{3u} (\Gamma_3^-)$	IR active (a)	526	527	527	527	527
$*B_{3g}(\Gamma_3^+)$	Raman active	373	305	368	305	368	$A_g(\Gamma_1^+)$	Raman active	528	527	528	527	528
$*B_{3u} (\Gamma_3^-)$	IR active (a)	382	321	321	321	321	$B_{1u} (\Gamma_2^-)$	IR active (c)	545	545	545	545	545
$*B_{1u} (\Gamma_2^-)$	IR active (c)	384	323	322	323	322	$B_{3u} (\Gamma_3^-)$	IR active (a)	551	553	554	553	554
$*B_{3u} (\Gamma_3^-)$	IR active (a)	400	370	367	370	367	$B_{1g} (\Gamma_2^+)$	Raman active	569	559	561	559	561
$*B_{1u} (\Gamma_2^-)$	IR active (c)	402	371	368	371	368	$B_{3g} (\Gamma_3^+)$	Raman active	571	561	563	561	563
$A_u (\Gamma_1^-)$	Silent	404	406	406	406	406	$A_g(\Gamma_1^+)$	Raman active	580	576	576	576	576
$B_{2g}\left(\Gamma_4^+\right)$	Raman active	409	408	409	408	409	$B_{1u} (\Gamma_2^-)$	IR active (c)	581	573	577	573	577
$B_{2u} (\Gamma_4^-)$	IR active (b)	410	409	409	409	409	$B_{2g} (\Gamma_4^+)$	Raman active	583	579	580	579	580
$A_g(\Gamma_1^+)$	Raman active	413	413	413	412	413	$B_{3u} (\Gamma_3^-)$	IR active (a)	591	586	587	586	587
$B_{1g}\left(\Gamma_2^+\right)$	Raman active	424	428	427	428	427	$B_{2g} (\Gamma_4^+)$	Raman active	592	587	587	587	587
$B_{2g}\left(\Gamma_4^+\right)$	Raman active	426	425	427	425	427	$A_g(\Gamma_1^+)$	Raman active	600	593	594	593	594
$B_{3g}\left(\Gamma_3^+\right)$	Raman active	426	429	428	429	428	$B_{1u} (\Gamma_2^-)$	IR active (c)	642	643	642	643	642
$B_{2u} (\Gamma_4^-)$	IR active (b)	427	432	426	432	426							

the physics of different Cr compounds [49,50]. In order to show that the physical results obtained from our calculations are robust against variations of this parameter, we repeated the phonon calculations with different values of U, namely for U=2 eV and U=4 eV. In Table IX, the frequencies of the Raman active A_g Γ -point phonons are listed for these values of U and the five different magnetic configurations considered. Changing the value of U causes changes in the hybridization of the Cr^3 + ions with their neighbors and so has quantitative effects on the phonon frequencies. In particular,

the frequencies change as much as few percent when U is changed by 1 eV. However, the primary qualitative result that is mentioned in the main text, i.e., that only one A_g mode has strong spin-phonon coupling (defined by a change of phonon frequency by $\geqslant 15$ cm⁻¹ in different magnetic states), is independent of the value of U chosen. While we do not present the results for other phonon modes, our calculations indicate that the same result applies to all Γ -point phonons, and hence the qualitative conclusions are not dependent on the value of U chosen.

TABLE IX. A_g phonon frequencies from first principles, calculated for different magnetic configurations and different values of Hubbard U used in the DFT + U calculations, in cm⁻¹. While changing the value of U causes minor quantitative changes, the fact that only the mode at $\sim 300 \text{ cm}^{-1}$ has strong spin-phonon coupling is robust against variations of U.

$U=2~\mathrm{eV}$					U = 3 eV					$U=4~\mathrm{eV}$					
FM	AFM1	AFM2	AFM3	AFM4	FM	AFM1	AFM2	AFM3	AFM4	FM	AFM1	AFM2	AFM3	AFM4	
101	100	100	100	100	100	100	100	100	100	101	101	101	101	101	
142	141	141	141	141	142	142	142	142	142	142	142	142	142	142	
247	247	246	248	246	249	249	248	249	248	251	251	250	251	250	
308	286	286	286	286	310	293	293	293	293	313	299	299	299	299	
406	407	408	407	408	413	413	413	412	413	417	417	418	417	418	
420	417	419	417	419	428	427	428	427	428	435	435	436	435	436	
449	444	446	444	446	454	451	453	451	453	460	457	459	458	459	
464	458	459	458	459	469	464	465	464	465	474	470	471	470	471	
519	517	519	517	519	528	527	528	527	528	537	536	537	536	537	
573	570	570	570	570	580	576	576	576	576	584	582	581	582	583	
592	584	585	584	585	600	593	594	593	594	605	601	601	601	601	

- [1] D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988).
- [2] T. Jolicoeur and J. C. Le Guillou, Phys. Rev. B 40, 2727 (1989).
- [3] L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82, 3899 (1999).
- [4] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. Lett. 97, 207202 (2006).
- [5] O. A. Starykh, A. V. Chubukov, and A. G. Abanov, Phys. Rev. B 74, 180403 (2006).
- [6] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 79, 144416 (2009).
- [7] M. Mourigal, W. T. Fuhrman, A. L. Chernyshev, and M. E. Zhitomirsky, Phys. Rev. B 88, 094407 (2013).
- [8] R. Coldea, D. A. Tennant, and Z. Tylczynski, Phys. Rev. B 68, 134424 (2003).
- [9] Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Phys. Rev. Lett. 108, 057205 (2012).
- [10] H. D. Zhou, C. Xu, A. M. Hallas, H. J. Silverstein, C. R. Wiebe, I. Umegaki, J. Q. Yan, T. P. Murphy, J.-H. Park, Y. Qiu, J. R. D. Copley, J. S. Gardner, and Y. Takano, Phys. Rev. Lett. 109, 267206 (2012).
- [11] M. Poienar, F. Damay, C. Martin, J. Robert, and S. Petit, Phys. Rev. B **81**, 104411 (2010).
- [12] H. J. Lewtas, A. T. Boothroyd, M. Rotter, D. Prabhakaran, H. Müller, M. D. Le, B. Roessli, J. Gavilano, and P. Bourges, Phys. Rev. B 82, 184420 (2010).
- [13] J. Oh, M. D. Le, J. Jeong, J.-H. Lee, H. Woo, W.-Y. Song, T. G. Perring, W. J. L. Buyers, S.-W. Cheong, and J.-G. Park, Phys. Rev. Lett. 111, 257202 (2013).
- [14] S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, and R. Kato, Nature Communications **2**, 275 (2011).
- [15] J. P. Sheckelton, J. R. Neilson, D. G. Soltan, and T. M. McQueen, Nature Materials 11, 493 (2012).
- [16] M. Mourigal, W. T. Fuhrman, J. P. Sheckelton, A. Wartelle, J. A. Rodriguez-Rivera, D. L. Abernathy, T. M. McQueen, and C. L. Broholm, Phys. Rev. Lett. 112, 027202 (2014).
- [17] H. Pausch and H. Müller-Buschbaum, Zeitschrift für anorganische und allgemeine Chemie 405, 1 (1974).

- [18] H. Pausch and H. Müller-Buschbaum, Zeitschrift für anorganische und allgemeine Chemie 405, 113 (1974).
- [19] L. C. Chapon, P. Manuel, F. Damay, P. Toledano, V. Hardy, and C. Martin, Phys. Rev. B 83, 024409 (2011).
- [20] S. Toth, B. Lake, S. A. J. Kimber, O. Pieper, M. Reehuis, A. T. M. N. Islam, O. Zaharko, C. Ritter, A. H. Hill, H. Ryll, K. Kiefer, D. N. Argyriou, and A. J. Williams, Phys. Rev. B 84, 054452 (2011).
- [21] S. E. Dutton, E. Climent-Pascual, P. W. Stephens, J. P. Hodges, A. Huq, C. Broholm, and R. Cava, J. Phys.: Condens. Matter 23, 246005 (2011).
- [22] K. Singh, C. Simon, and P. Toledano, Phys. Rev. B 84, 064129 (2011).
- [23] L. Zhao, T.-W. Lan, K.-J. Wang, C.-H. Chien, T.-L. Hung, J.-Y. Luo, W.-H. Chao, C.-C. Chang, Y.-Y. Chen, M.-K. Wu, and C. Martin, Phys. Rev. B 86, 064408 (2012).
- [24] S. Toth, B. Lake, K. Hradil, T. Guidi, K. C. Rule, M. B. Stone, and A. T. M. N. Islam, Phys. Rev. Lett. 109, 127203 (2012).
- [25] D. Wulferding, K.-Y. Choi, P. Lemmens, A. N. Ponomaryov, J. van Tol, A. N. Islam, S. Toth, and B. Lake, J. Phys.: Condens. Matter 24, 435604 (2012).
- [26] M. Schmidt, Z. Wang, C. Kant, F. Mayr, S. Toth, A. T. M. N. Islam, B. Lake, V. Tsurkan, A. Loidl, and J. Deisenhofer, Phys. Rev. B 87, 224424 (2013).
- [27] P. Fleury and R. Loudon, Phys. Rev. 166, 514 (1968).
- [28] C. Kant, J. Deisenhofer, T. Rudolf, F. Mayr, F. Schrettle, A. Loidl, V. Gnezdilov, D. Wulferding, P. Lemmens, and V. Tsurkan, Phys. Rev. B 80, 214417 (2009).
- [29] J. R. Neilson, N. Drichko, A. Llobet, M. Balasubramanian, M. R. Suchomel, and T. M. McQueen, arXiv:1310.6828.
- [30] N. Perkins and W. Brenig, Phys. Rev. B 77, 174412 (2008).
- [31] F. Vernay, T. Devereaux, and M. Gingras, J. Phys.: Condens. Matter 19, 145243 (2007).
- [32] N. B. Perkins, G.-W. Chern, and W. Brenig, Phys. Rev. B 87, 174423 (2013).
- [33] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- [34] P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).

- [35] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
- [36] H. T. Stokes, D. M. Hatch, and B. J. Campbell, Isotropy Software Suite (2007), http://stokes.byu.edu/isotropy.html.
- [37] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Acta Crystallogr., Sect. A **62**, 115 (2006).
- [38] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Zeitschrift für Kristallographie 221, 15 (2006).
- [39] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, and A. Kirov, Bulg. Chem. Commun. 43, 183 (2011).
- [40] E. Tasci, G. de La Flor, D. Orobengoa, C. Capillas, J. Perez-Mato, and M. Aroyo, in *EPJ Web of Conferences*, Vol. 22 (EDP Sciences, Paris, 2012), p. 00009.
- [41] K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).
- [42] V. Hardy, C. Martin, F. Damay, and G. André, J. Magn. Magn. Mater. 330, 111 (2013).

- [43] M. G. Cottam and D. J. Lockwood, Light Scattering in Magnetic Solids (Wiley, New York, 1986).
- [44] T. P. Devereaux and R. Hackl, Reviews of Modern Physics 79, 175 (2007).
- [45] C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, Phys. Rev. Lett. 94, 217201 (2005).
- [46] M. Wintel, H. U. Everts, and W. Apel, Phys. Rev. B 52, 13480 (1995).
- [47] A. Ignatenko, V. Y. Irkhin, and A. Katanin, Solid State Phenomena 152, 257 (2009).
- [48] K.-Y. Choi, P. Lemmens, D. Heydhausen, G. Güntherodt, C. Baumann, R. Klingeler, P. Reutler, and B. Büchner, Phys. Rev. B 77, 064415 (2008).
- [49] C. J. Fennie and K. M. Rabe, Phys. Rev. B **72**, 214123 (2005).
- [50] C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006).