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We report a comprehensive inelastic neutron-scattering study of the frustrated pyrochlore antiferro-
magnet MgCr2O4 in its cooperative paramagnetic regime. Theoretical modeling yields a microscopic
Heisenberg model with exchange interactions up to third-nearest neighbors, which quantitatively explains
all of the details of the dynamic magnetic response. Our work demonstrates that the magnetic excitations
in paramagnetic MgCr2O4 are faithfully represented in the entire Brillouin zone by a theory of magnons
propagating in a highly correlated paramagnetic background. Our results also suggest that MgCr2O4 is
proximate to a spiral spin-liquid phase distinct from the Coulomb phase, which has implications for the
magnetostructural phase transition in MgCr2O4.
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The classical pyrochlore Heisenberg antiferromagnet is
a canonical model of frustrated magnetism. With only
nearest-neighbor (NN) exchange interactions, it does not
exhibit magnetic ordering down to zero temperature, and
instead, it hosts a liquidlike state of strongly correlated
spins. In real space, this cooperative paramagnet is a system
of underconstrained spins on a network of corner-sharing
tetrahedra. The energy is minimized if the vector sum
of spins is zero on every tetrahedron, giving rise to an
extensive ground-state degeneracy. Mapping spin variables
to flux variables on the bonds of the dual diamond lattice
transforms this spin constraint to a divergence-free con-
dition on the flux fields. Consequently, spin correlations
decay algebraically in real space, and sharp features—
known as pinch points—are present in reciprocal space.
This exotic magnetic state of matter is termed a Coulomb
phase [1–5].
The best candidate materials to realize the Coulomb

phase include spin ices [6–8], the cubic AB2O4 spinels, and
NaA0B2F7 fluorides [9–11], in which a transition-metal ion
B occupies a pyrochlore lattice. Canonical spinel examples
are CdCr2O4 [12], ZnCr2O4 [13], and MgCr2O4 [14,15],
which are all highly frustrated antiferromagnets that ulti-
mately order magnetically at temperatures TN much
smaller than the scale of exchange interactions. Contrary
to expectations, neutron-scattering experiments on these
spinels do not reveal sharp pinch points; instead, only broad
ringlike diffuse scattering patterns are observed. These
experimental observations have been explained in terms of

decoupled hexagonal spin clusters—loops of six spins with
alternating directions [16]. While this phenomenological
model has been remarkably successful in explaining
magnetic scattering features [13–15,17], it leaves three
key questions unaddressed. First, what is the microscopic
origin of clusterlike scattering in terms of the underlying
magnetic interactions? Second, how does frustration relate
to the complex ordered structures that B-site spinels often
exhibit below TN? And, third, what is the origin of the
broad magnetic excitation spectrum observed in the co-
operative paramagnetic state? This final question is of
particular importance because three explanations have been
proposed: (i) scattering is broad in energy because exci-
tations have a short lifetime, (ii) scattering is broad because
the excitations are fractionalized, and (iii) scattering is
broad in momentum because the excitations are riding on a
disordered background.
In this Letter, we use a combination of neutron spec-

troscopy and modeling to determine the spin Hamiltonian
of MgCr2O4 and the nature of its magnetic excitations
in the correlated paramagnetic regime at temperature
T ¼ 20 K. We study this material because it is a para-
digmatic example of a frustrated antiferromagnetic spinel
that shows clusterlike scattering above TN and exotic
magnetic order below TN. Our results significantly advance
previous studies by measuring and explaining the entire
four-dimensional (4D) magnetic response of MgCr2O4 as a
function of energy and momentum. We use quantitative
modeling to determine a set of exchange interactions that
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best reproduces our experimental data. Remarkably, we
find that linear spin-wave theory accurately captures all
the details of the correlated paramagnetic response in
MgCr2O4, revealing the harmonic nature of excitations in
this classical spin liquid. Furthermore, we find that our
model remains highly frustrated despite the presence of
further-neighbor (FN) interactions. We explain this result by
showing that MgCr2O4 is proximate to a highly degenerate
spiral-spin-liquid phase distinct from the Coulomb phase.
Our results suggest that competition between nearly-
degenerate states drives the complex low-temperature states
often observed in frustrated B-site spinels.
The crystal structure of MgCr2O4 at T ¼ 20 K is cubic

(space group Fd3̄m, a ¼ 8.33 Å). Magnetic Cr3þ ions
interact magnetically with their nearest neighbors (NN)
primarily via direct exchange (dCr−Cr ¼ 2.95 Å) and with
further neighbors (FN) via superexchange [Fig. 1(a)].
Thermomagnetic measurements [18–21] reveal net anti-
ferromagnetic interactions with a Weiss constant ranging

from θW ¼ −346 K [18,19] to −433 K [20,21], and
they are compatible with spin-only magnetic moments
for Cr3þ (S ¼ 3=2 and g ≈ 2.05) [20]. Below ∼40 K
(≈ 0.1θW), the magnetic susceptibility markedly departs
from the Curie-Weiss law, in contrast with predictions
for the NN model [22]. Furthermore, a cooperative para-
magnetic regime appears with clusterlike scattering
[14,15,17,23]. This regime persists down to TN ≈ 13 K
[20,21,24], where the onset of long-range magnetic order-
ing [18,20,21] is accompanied by a structural distortion to
tetragonal or lower symmetry [25–27] due to spin-lattice
coupling [13,16,28,29]. Magnetic Bragg peaks observed
below TN are indexed by two inequivalent propagation
vectors, kL;1 ¼ ð1

2
; 1
2
; 0Þ and kL;2 ¼ ð1; 0; 1

2
Þ [30] with

respect to the cubic cell; the magnetic structure of this
so-called “L phase” is not fully solved [23,30]. Moreover,
an additional partially-ordered magnetic phase (“H phase”)
with a single propagation vector kH ¼ ð0; 0; 1Þ is observed
for some samples between TN and TH ≈ 16 K [14,30].

FIG. 1. (a) The pyrochlore lattice of Cr3þ ions (red spheres) in MgCr2O4 and definition of exchange interactions up to third neighbors.
Note that J3a and J3b span the same distance but are not equivalent by symmetry. (b) Contour plot of the goodness of fit χ2 between
calculations and neutron (blue solid lines) and bulk susceptibility (green dashed lines) measurements. FN exchange interactions J2 and
J3a are fixed on a grid with J1 and J3b fitted at each grid point. The choice of J2 � J3a as plotting axes highlights the nearly equivalent
spin structure factors obtained for J2 ¼ J3a. Spin correlations are calculated using the self-consistent Gaussian approximation (SCGA)
at T ¼ 20 K. The red star is the best overall fit. (c) Momentum dependence of I0ðQÞ ¼ FðjQjÞSðQÞ and I1ðQÞ ¼ FðjQjÞKðQÞ along
several paths of the Brillouin zone (BZ) at T ¼ 20 K, and comparisons with SCGA predictions for NN (dashed black line) and FN (solid
red line) models. For the NN model, J1 ¼ 38 K. (d)–(e) Selected reciprocal-space planes showing I0ðQÞ and I1ðQÞ, as labeled in the
figure, and comparison between NN and FN models calculated using the SCGA. Throughout, white rings are masked aluminum
background lines. In (c)–(e), only Ei ¼ 80 meV data are shown, but both 40 meV and 80 meV data were included in fits.
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To understand the nature of the magnetic excitations in
MgCr2O4 we performed neutron-scattering experiments
that expose its magnetic excitation spectrum as a function
of neutron momentum transfer ℏQ ¼ ℏki − ℏkf and energy
transfer E ¼ Ei − Ef to the sample. Large single crystals of
MgCr2O4 were grown using the floating-zone technique
following systematic sample-quality studies [20,21]. Our
10 best crystals were coaligned on an aluminum holder for
a total sample mass m ≈ 13.5 g and overall mosaic ≤ 3°
(see Supplemental Material [31], Sec. S1). Inelastic
neutron-scattering data were collected on the SEQUOIA
instrument [32,33] at the Spallation Neutron Source, Oak
Ridge National Laboratory (USA). Incoming neutron
energies of Ei ¼ 40 and 80 meV were used, yielding
elastic energy resolutions of 0.8(4) and 1.6(8) meV, respec-
tively. The sample was mounted with the [100] and [010]
directions in the horizontal scattering plane, cooled to
T ¼ 20 K using a closed-cycle refrigerator, and rotated
about a vertical axis in steps of 1° over a range > 90°.
The data were converted to absolute units in MANTID

[34] using measurements of a vanadium standard, ana-
lyzed in HORACE [35] where background contributions
and Bragg peaks from the sample were masked, and
symmetrized in the m3̄m Laue class (see Sec. S2 [31]).
The normalized magnetic intensity can be written
IðQ; EÞ ¼ ð1

2
γr0Þ2½gfðjQjÞ�2SðQ; EÞ, where ð1

2
γr0Þ2 ¼

0.072 65 × 10−24 cm2 [36], fðjQjÞ is the Cr3þ magnetic
form factor, and SðQ; EÞ is the magnetic scattering
function. We obtained energy-integrated quantities
IαðQÞ≡R

E0
0 dEEαð1þe−E=kBTÞSðQ;EÞ, where α∈f0;1g,

and E0 ¼ 20 meV is chosen to encompass the magnetic
excitation bandwidth. The quantities I0ðQÞ and I1ðQÞ
are proportional to the instantaneous magnetic
structure factor SðQÞ and the first moment KðQÞ,
respectively, with the constant of proportionality
FðjQjÞ ¼ ð1

2
γr0Þ2½gfðjQjÞ�2.

To model the magnetism of MgCr2O4, we use the
Heisenberg model H ¼ 1

2

P
ijJijSi · Sj, where Si repre-

sents the spin at one of the N sites Ri of the pyrochlore
lattice, and the four interactions Jij ∈ fJ1; J2; J3a; J3bg
extend to third-nearest neighbors [Fig. 1(a)]. We will
show that it is crucial to model the two inequivalent third-
neighbor pathways J3a and J3b separately. Our choice of
a Heisenberg model is motivated by the small orbital
contribution to the magnetic moment (g ≈ 2.05) and the
electron spin resonance results above TN [37,38]. This is
verified by a preliminary reverse Monte Carlo analysis
[39–42] that reveals an isotropic distribution of spin
orientations (see Sec. S3 [31]). For a Heisenberg
paramagnet, the structure factor is the Fourier trans-
formation of instantaneous two-spin correlators, SðQÞ¼
ð2=3NÞPij hSi ·SjicosðQ ·rijÞ, where rij ¼ Ri −Rj is
the vector between the spin pair. The first moment
contains correlators weighted by the corresponding

interactions [43,44], KðQÞ ¼ −ð1=3NÞPij JijhSi · Sji
½1 − cosðQ · rijÞ�. As J3a and J3b are symmetry inequi-
valent but associated with the same lattice harmonics, it is
impossible to determine their values by a simple ratio
between Fourier coefficients of the structure factor
and the first moment. Therefore, we employ the self-
consistent Gaussian approximation (SCGA) [45] to
calculate SðQÞ and KðQÞ from the magnetic interaction
matrix; this method is in excellent quantitative
agreement with classical Monte Carlo simulations (see
Sec. S5 [31]).
Determining the magnetic interactions of MgCr2O4 is a

challenging problem, because the spin correlations of the
model are essentially degenerate along the line J2 ¼ J3a in
the interaction space [46]. Consequently, we used three
complementary approaches. First, we performed a global fit
to SðQÞ and KðQÞ for a grid of values of J2 and J3a, with
J1 and J3b fitted at each grid point. The corresponding
goodness-of-fit χ2, shown in Fig. 1(b), reveals a shallow
valley of possible minima (see Sec. S4 [31]). Second, we
calculated the goodness-of-fit to the temperature depend-
ence of bulk magnetic susceptibility data between 20 K
and 400 K for all the parameter sets fJ1; J2; J3a; J3bg
extracted from the SðQÞ þKðQÞ fits. The intersection of
χ2 minima for these two results yields J1 ¼ 38.05ð3Þ K,
J2=J1 ¼ 0.0815, J3a=J1 ¼ 0.1050, and J3b=J1 ¼
0.0085ð1Þ [red star in Fig. 1(b)]. Finally, we validated
these parameters using fits to the energy-resolved SðQ;ωÞ,
as discussed below [Fig. 2].
In Fig. 1, we compare the experimental IαðQÞ with

SCGA calculations for our optimized exchange parameters.
The FN interactions are small, with a maximum of
J3a ≈ 0.1J1, and all of them are antiferromagnetic, in
contrast to first-principles estimates [47]. Crucially, how-
ever, these interactions quantitatively explain the clusterlike
scattering [13,15,17,23] [Fig. 1(d)–1(e)]. Compared to the
NN model, our model correctly captures the suppressed
intensity at the (2,0,0) and (2,2,0) pinch-point positions
[Fig. 1(c)], indicating the destruction of the Coulomb phase
by FN interactions [45]. In real space, the spin correlators
as a function of distance show an alternation in sign, which
explains the apparent success of the decoupled hexagonal
spin-cluster model (see Sec. S5 [31]). However, our FN
Heisenberg model enables three key advances. First, it
allows a complete microscopic description of the spin
dynamics. Second, it allows the frustration to be understood
in terms of the degeneracies of the model, and third, it
enables the nature of the low-temperature ordered phases
to be predicted in the absence of magnetoelastic effects.
We discuss these results in turn below.
Magnetic excitation spectra of our sample are presented

in Fig. 2. The excitations are gapless with a bandwidth
of ≈20 meV (∼4J1S), although the dominant contribution
to the spectral weight resides below ≈5 meV (∼J1S)
[Fig. 2(a)]. Close to the suppressed pinch point at
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(2,0,0), excitations are relatively sharp and dispersive along
the ðξ; 0; 0Þ direction [Fig. 2(b)], a feature also observed in
NaCaNi2F7 [11]. Along other directions, such as ð2; ξ; 0Þ
and ðξ; ξ; 0Þ, the excitations form a broad continuum
[Fig. 2(a)] whose energy dependence is Lorentzian with
a Q-dependent relaxation rate [Fig. 2(c)]. A simple fac-
torization of the dynamic response as SðQ; EÞ ¼
SðQÞfðEÞ, which implies spatially incoherent excitations,
is not possible for MgCr2O4 [Fig. 2(d)], in contrast to
theoretical predictions for the lowest branch of excitations
in the NN model [48].
To examine the nature of excitations, we calculated

SðQ; EÞ in the paramagnetic regime using linear spin-wave
theory (LSWT) in a framework previously used to model
metallic spin glasses [49,50]. For a given set of interactions,
we use Monte Carlo simulations to generate ensembles of
spin configurations at low but finite temperature to avoid
ordering, calculate harmonic fluctuations of each spin
configuration, and average SðQ; EÞ over these samples
(see Sec. S6 [31]). We compared LSWT calculations—
performed for several sets of interactions near the
shallow χ2 minimum of Fig. 1(b)—with the entire 4D

momentum-energy dependence of our experimental data
(see Sec. S7 [31]). The best match is obtained for our
previously-determined FN model, with LSWT calculations
in striking agreement with the experimental observations
[Fig. 2].
Our microscopic model also explains the persistence of a

classical spin liquid in MgCr2O4 despite FN interactions. In
classical spin liquids, the lowest-energy eigenvalues of the
interaction matrix are degenerate throughout large regions
of the Brillouin zone, which suppresses magnetic ordering.
We find that for the FN parameters of MgCr2O4, ordering
wave vectors κ with energies within 0.5% of the global
energy minimum describe a large surface near the zone
boundary [Fig. 3(a)]. This result is surprising because FN
interactions are generically expected to lift the degeneracy
of the NN model. To explain it, we calculated the phase
diagram of ordered states as a function of J2, J3a, and J3b
[Fig. 3(b)]. Crucially, we uncover planes in interaction
space along which the degeneracy of possible ordered
states is exact and macroscopic. Our FN parameters place
MgCr2O4 in proximity to such a phase, for which wave
vectors of the type κ ¼ ð1; h; 0Þ are degenerate [blue lines

FIG. 2. Magnetic excitation spectra of MgCr2O4 at T ¼ 20 K measured with incident neutron energy Ei ¼ 40 meV, and comparison
with linear spin-wave theory (LSWT) calculations for our FN model. (a) Momentum-energy slices through g2SðQ; EÞ along different
paths, comparing data (left column) and FN model (right column). (b) Cuts at constant energies Ē� 0.2 meV through the data (gray
circles) and FN model (red lines), where Ē is labeled on each plot. The intensity is multiplied by Ē and offset by 4 sr−1 Cr−1 for clarity.
(c) Energy dependence of the experimental (colored circles) and modeled (colored lines) dynamical structure factor at selected
momenta, normalized to the energy transfer E0 ¼ 2 meV. (d) Slices at constant energies Ē� 0.2 meV through the data (left column)
and the FN model (right column) in the ðh; k; kÞ plane. Throughout, blank space is due to kinematic constraints on the scattering, and the
extra intensity at (4,0,0) arises from a strong nuclear Bragg peak and its associated acoustic phonon.
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in Fig. 3(a)]. The corresponding states are a degenerate set
of coplanar spirals (see Sec. S8 [31]), analogous to the
“spiral spin liquid” states previously known only for the
J1 − J2 model on the diamond lattice [51]. This result
explains the similarity of clusterlike scattering in MgCr2O4

to neutron-scattering data for diamond-lattice systems such
as MnSc2S4 [52].
Our analysis sets a benchmark for the comprehensive

determination of magnetic interactions in materials where
the traditional approach of spin-wave dispersion modeling
is not available—either because the system does not order
at an accessible temperature, or because the nature of this
ordering is controlled by a magnetic Hamiltonian that is
distinct from that of the paramagnetic phase due to
magnetoelastic effects. The latter is the case in frustrated
spinels such as MgCr2O4 and ZnCr2O4. Below TN, the
presence of several symmetry-unrelated ordering wave
vectors makes magnetic structure solution very challeng-
ing. However, our results present a key insight: the
degeneracy of our spiral spin liquid state encompasses
two of the ordering wave vectors, κH and κL;2, that are
observed experimentally below TN in MgCr2O4 and
ZnCr2O4. This result suggests that the complex magnetic
ordering observed in these frustrated spinels is a conse-
quence of the near degeneracy of competing ordered states
shown in Fig. 3(a). While the exact ground state is likely
selected by magnetostructural effects beyond the
Heisenberg model, we anticipate that our paramagnetic
Hamiltonian will provide a valuable starting point to
develop a microscopic theory of magnetic ordering in
these complex materials. It is remarkable that, within the

resolution of our experiment, the spin dynamics of
MgCr2O4 at T ¼ 20 K can be entirely described by spins
precessing around their local mean field, with no evidence
of quantum effects [11]. Crucially, this excludes fraction-
alization and short lifetime as the physical origin for the
broad momentum-energy response; rather, it indicates that
scattering is broad in the wave vector because excitations
propagate in a spatially disordered background. Similar
observations for NaCaNi2F7 [53], a pyrochlore antiferro-
magnet with a range of interactions and a spin quantum
number that differs from MgCrO4, suggest the robustness
of our theoretical results.
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