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An important challenge in magnetism is the unambiguous 
identification of a quantum spin liquid1,2, of potential impor-
tance for quantum computing. In such a material, the magnetic 
spins should be fluctuating in the quantum regime, instead 
of frozen in a classical long-range-ordered state. While this 
requirement dictates systems3,4 wherein classical order is 
suppressed by a  frustrating lattice5, an ideal system would 
allow tuning of quantum fluctuations by an external param-
eter. Conventional three-dimensional antiferromagnets can 
be tuned through a quantum critical point—a region of highly 
fluctuating spins—by an applied magnetic field. Such systems 
suffer from a weak specific-heat peak at the quantum critical 
point, with little entropy available for quantum fluctuations6. 
Here we study a different type of antiferromagnet, comprised 
of weakly coupled antiferromagnetic spin-1/2 chains as real-
ized in the molecular salt K2PbCu(NO2)6. Across the tempera-
ture–magnetic field boundary between three-dimensional 
order and the paramagnetic phase, the specific heat exhibits 
a large peak whose magnitude approaches a value suggestive 
of the spinon Sommerfeld coefficient of isolated quantum spin 
chains. These results demonstrate an alternative approach 
for producing quantum matter via a magnetic-field-induced 
shift of entropy from one-dimensional short-range order to a  
three-dimensional quantum critical point.

Previous work on field-tuning of quantum fluctuations has focused 
on the transverse-field Ising model where the magnetic field (H) cou-
ples to a sector of the Hamiltonian not directly modifying the order 
parameter. While this paradigm has been explored in the three-dimen-
sional (3D) dipolar ferromagnet LiHoF4 (refs 7,8), and the 1D system 
CoNb2O6 (ref. 9), the need for a unique Ising-axis normal restricts 
the number of potential quantum-spin-liquid host materials. For 
the much broader class of 3D antiferromagnets (AFs), H can indeed 
tune the Néel temperature (TN) into the quantum regime. Within the 
ordered state, however, on increasing H from zero one first encounters 
a spin-flop transition (for finite spin anisotropy), followed by a gradual 
reorientation of those spins (Fig. 1a). Hence, in destroying Néel order, 
H decreases the transverse components of the staggered moment to a 
value that is vanishingly small near the transition to the field-polarized 
state, leaving little entropy to be lost near T =  0, and thus low spectral 
weight available for quantum entanglement6.

Here we demonstrate a different approach to tuning through a quan-
tum critical point (QCP). The quasi-1D spin-1/2 AF K2PbCu(NO2)6 
orders classically at 0.68 K (ref. 10; Fig.  1b). At lower temperatures 
within the Néel state, applied H values less than the intra-chain mean 
field cause little change in the specific heat C(T, H). At the phase 
boundary, however, a large amount of entropy is released, leading to a 
peak in C/T (Fig. 1c), the value of which (~ 2 J mol–1 K–2 at the lowest 

temperatures studied) is suggestive of the spinon Sommerfeld coeffi-
cient observed in uncoupled Heisenberg spin-1/2 chains11. This com-
petition between H and singlet-like short-range order is reminiscent 
of spin-dimer QCPs12,13 and suggests a much larger family of materials 
for creating highly fluctuating quantum matter.

We grew single crystals of K2PbCu(NO2)6 using a custom gel-
growth technique14 (see Methods). At T =  280 K, K2PbCu(NO2)6 
(elpasolite structure denoted CuElp, face-centred-cubic lattice, 
space group Fm3) undergoes a Jahn–Teller distortion15,16. This dis-
tortion leads to an antiferro-distortive pattern of elongation axes15 
of the Cu–NO2 octahedra in the a–b plane, and a 2% contraction 
along the c axis (see Fig. 1c inset). This contraction is responsible 
for quasi-1D behaviour as evidenced by a good fit of the mag-
netic susceptibility, χ(T), to the Bonner–Fisher result for isolated 
1D spin chains with Hamiltonian = ∑ ⋅H JS Si j (ref. 17), yielding 
an intra-chain exchange energy J/kB =  5.4 K (Fig.  2a). Isomorphic 
Rb2PbCu(NO2)6 displays similar behaviour18. In K2PbCu(NO2)6, we 
find a saturation field of Hs ~ 7 T at T =  1.7 K (Fig. 2b); thus, the col-
lective behaviour in CuElp is tunable with modest magnetic fields.

Previous C(T, H =  0) measurements on K2PbCu(NO2)6 show a 
single broad λ peak, signalling a transition to 3D order around TN 
~ 0.50 K (ref. 10). Our elastic neutron scattering measurements down 
to T =  0.3 K at H =  0 (Fig. 2c,d,f) and C(T, H) measurements up to 
H =  6 T (Figs. 1 and 2e) confirm that this transition is to an AF state. 
In Fig. 1c, C(T) for CuElp is shown in fixed fields. At H =  0, three 
peaks are evident, a result reproduced in four different crystals syn-
thesized in three different growth runs. The highest temperature 
peak at Th =  0.68 K corresponds to the temperature at which magnetic 
Bragg scattering (Fig. 2c,d) is first seen on cooling (Fig. 2f). A sec-
ond peak is seen at Tm =  0.58 K and a third at Tl =  0.51 K. At H =  1 T, 
the peak at Tl sharpens and is visible up to 2 T, but has vanished by 
3 T. The termination of this Tl line implies it is not symmetry-low-
ering, and possibly a spin-flop transition. The other two transitions 
are robust along the entire phase boundary. The low-field nature of 
this boundary is of interest. While TN decreases with increasing H in 
the mean-field approximation, more accurate techniques reveal small 
positive ∂ ∕∂T HN  values due to spin dimensionality reduction19, which 
is pronounced for quasi-1D systems20. Comparing ∂ ∕∂T HN  of CuElp 
in reduced units with other 1D magnets, we find that the behaviour is 
similar to that seen in (NC5H6)MnCl3·H2O for which J/Ji =  14 (ref. 20),  
where Ji is the effective inter-chain coupling (in CuElp, this would be 
derived from J′ , J″  and J shown in Fig. 1c inset). Determination of  
Ji will require inelastic neutron scattering, planned for future work.

Our elastic neutron scattering experiment at H =  0 is sensitive to 
static magnetic correlations contained within the (hhl) plane, where 
h and l span the reciprocal lattice of the room-temperature cubic unit 
cell. At T =  0.29 K, we observe a Bragg peak at wavevector q = (0,0,1/2) 
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Fig. 1 | comparison of the T–H phase diagram for the quasi-1D system K2Pbcu(NO2)6 with the behaviour of a generic 3D antiferromagnet. a, Sketch of 
the phase diagram of a conventional 3D antiferromagnet showing the AF phase, the spin-flop phase and the expected C(T) on the phase boundary. LRO, 
long-range order; PM, paramagnetic. b, T–H phase diagram of K2PbCu(NO2)6 showing a possible ordered state consistent with neutron scattering. SRO, 
short-range order. c, Specific heat divided by temperature versus temperature for K2PbCu(NO2)6. Each curve is offset vertically by H in tesla times 1 J mol–1 
K–2 (inset). Crystal structure of K2PbCu(NO2)6 showing the Cu and Pb atoms, with K and NO2 omitted18. The Jahn–Teller-induced orbital order is depicted 
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Fig. 2 | Magnetic properties of K2Pbcu(NO2)6 showing quasi-1D behaviour and antiferromagnetic order. a, Temperature dependence of the magnetic 
susceptibility in a field of 0.1 T (black symbols) and 14 T (grey symbols). The solid red line is a fit to the data with the Bonner–Fisher susceptibility in the 
temperature range from 2 K to 50 K with J =  5.4 K. b, Isothermal magnetization at temperatures of 1.7 K (black symbols) and 5 K (grey symbols). The dashed 
red line is a fit to the field-linear part of the magnetization above 12 T and yields a saturated magnetization Ms of 1.08μB. c, Rocking curve around the (0,0,1/2) 
position of the cubic unit cell obtained by elastic neutron scattering at 0.29 K (filled symbols) and 0.65 K (open symbols). A fit with a double Gaussian profile 
is indicated by the red line. d, Longitudinal scan at the (0,0,1/2) position at the same temperatures. A fit with a double Lorentzian profile is indicated by the 
red line. e, Low-temperature part of the magnetic specific heat divided by temperature in zero magnetic field. f, Integrated neutron scattering intensity at 
the (0,0,1/2) Bragg peak position as a function of temperature and cooling protocol. The blue line is a guide to the eye. Dashed vertical arrows indicate the 
correspondence between features in the magnetic heat capacity and changes in the temperature slope of the integrated neutron scattering intensity.
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(Fig. 2c,d), which vanishes above T =  0.65 K, consistent with the C(T) 
anomalies (Fig.  2e). The peak shoulder at l ≈  0.53 r.l.u. (Fig.  2d) 
reflects the 1.2° full-width at half-maximum rocking curve (Fig. 2c) 
of Bragg peaks broadened by the Jahn–Teller distortion. Our survey 
of the (hhl) plane identifies more than ten other Bragg reflections 
all indexed by q =  τ  ±  km, where τ  is a reciprocal lattice vector and 
km =  (0,0,1/2) is the magnetic propagation vector. A candidate mag-
netic structure at T =  0.3 K is shown in Fig. 1b (inset). The tempera-
ture dependence of the magnetic signal, obtained by integrating the 
q =  (0,0,1/2) Bragg intensity is shown in Fig. 2f. No difference is found 
between warming or cooling, demonstrating good sample thermal-
ization. The integrated intensity changes non-trivially with tempera-
ture, presumably reflecting the three peaks in C(T).

In Fig. 3 we show C/T(H) at different fixed temperatures as a func-
tion of H from 0 to 7.2 T. The first striking aspect of these data is the 
weak H dependence over most of the range. Within the Néel state of a 
system with isotropic interactions and weak single-ion anisotropy, the 
continuous spin rotation induced by an increasing H leads to a broad 
peak in C/T(H) with a maximum at roughly half the critical field, Hc, 
as seen in Yb3Pt4 (ref. 6). The second striking aspect of our data is a 
sharp peak in C/T(H) at a value, Hm, consistent with the phase formed 
at Tm in the T-dependent sweeps in Fig. 1c. (At an H value ~5% larger 
than Hm, a second, smaller peak at Hh is seen, identifiable with the 
fixed-field Th.) Such a large anomaly has not been observed in the 
response of an AF to a longitudinal field, although recent measure-
ments in diluted CePd0.95Ni0.05Al bear some similarity to our results21. 
We also note the disparity between the magnitudes of TN and Hm. In 
3D AFs, kBTN ~ gμBHc, where g =  2. For CuElp, by identifying Hm with 
Hc, we find kBTN ~ 0.075 gμBHc, implying that the ordering degrees of 
freedom are not individual spins, but entities that approximate sin-
glets, consistent with ordering among spin chains.

The collective behaviour within isolated S =  1/2 Heisenberg 
chains is well understood through exact results (Bethe ansatz) and 

low-energy effective field theory22. The full form of C(T, H) is exactly 
known23 and yields a Sommerfeld form C(T,H) =  γ(H)T, where 
γ ν= π ∕ ∕H R H k( ) (3 ( ) )s B , R is the gas constant and vs(H) is the field-
dependent spinon velocity. Experimentally, such a linear-in-T term at 
H =  0 was found in Cu(pyrazine)(NO3)2 (CuPzN)24 and copper ben-
zoate25. For finite H, the thermodynamic Bethe ansatz was applied 
and confirmed experimentally in CuPzN (ref. 11) for fields well below 
Hs, the predicted magnetization saturation field11. Figure 4 shows the 
heights of the measured peaks in comparison with the spinon γ calcu-
lated for two different H values. The seemingly asymptotic behaviour 
of C/T(H) at values close to that predicted for isolated chains suggests 
the importance of 1D character for the present QCP. Regarding the 
functional form of C(T,H) for isolated chains, the point T =  0, H =  Hs 
is a 1 +  1D quantum phase transition, and near Hs takes on a quantum 
critical form, with C(H,T)/T =  T−1/2F((H–Hs)/T), where F(h) is a uni-
versal function (see  Supplementary Information). Remarkably, this 
QCP is described by free fermions, from which we obtain F(h). We 
find that it—and hence C(H)/T—demonstrates a two-peak behav-
iour, shown in the inset of Fig. 4. While the measured C(H)/T is quali-
tatively similar to this theoretical result, important differences exist 
between them. First, the experimental peak in C(H)/T decreases with 
decreasing temperature, seemingly approaching a fixed value close to 
that found in the Bethe ansatz calculation. Second, the experimental 
peak separation in H does not vary linearly with field in the same 
range of reduced temperature. It is important to note, however, that 
the calculation is performed for a single chain, whereas, experimen-
tally, the chains are coupled, and indeed three-dimensionally ordered, 
over most of the measurement range. While it is not feasible that the 
peak itself is caused by a nuclear Schottky or hyperfine contribu-
tion, the precise value of C/T might be influenced by such a contri-
bution (see Methods). To accurately compare the measured Cmax/T 
with single-chain theory, the mean field from the neighbouring 
chains must be accounted for. A full theoretical treatment of the 
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problem would invoke chain mean-field theory of the 3D coupling, 
known to be accurate for several systems26–28. In chain mean-field 
theory, intra-chain interactions are treated exactly while inter-
chain interactions are handled within mean-field theory.

The key finding of this work is that the physics near a QCP is 
tunable with field, invoking a comparison to the dimer magnets 
TlCuCl3 (ref. 12) and BaCuSi2O6 (ref. 29). In contrast to the dimer 
systems, however, CuElp is ordered at fields below the QCP, not 
above. More generally, the above results point to an alternative 
approach towards realizing strongly fluctuating quantum criticality 
in magnets, namely using the competition between a large lower-
dimensional (here 1D) two-spin antiferromagnetic interaction and 
magnetic field in tuning out of a 3D ordered state.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0010-y.
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Methods
Crystal preparation. Single crystals of K2PbCu(NO2)6 (CuElp) were grown 
in potassium metasilicate gels with potassium nitrate, lead acetate and copper 
acetate as starting materials, by a method to be discussed separately14. In short, to 
achieve crystal sizes up to 50 mm3, the nucleation rate was reduced by limiting the 
reactant diffusion rate in the metasilicate gel, and allowing several weeks for room-
temperature growth.

Magnetization and specific-heat measurements. Magnetization, and thus χ(T), 
was measured in a commercial superconducting quantum interference device 
magnetometer or using a vibrating sample magnetometer. The C(T, H) data 
were obtained in a top-loading 3He–4He dilution refrigerator using the semi-
adiabatic heat-pulse method. The sapphire calorimeter used was tightly trussed by 
polyester threads anchored to the mixing chamber of the refrigerator with a force 
of approximately 0.5 N, which is 104 times the maximum H-induced rotational 
force on the sample given a similar 10% g-factor anisotropy as reported for the Rb 
compound18. The sample used for C(T, H) had a cubic habit and was bonded via 
a (100) face to the calorimeter with silicone grease. To determine C as a smooth 
function of H at fixed T, data were taken in a narrow region encompassing the T 
value of interest for each field. The data were then fitted to a straight line, the H-
dependent parameters of which allow the computation of C(T) at an arbitrary T 
in the narrow range. Measurements were restricted to T values above 0.1 K, below 
which the onset of Kapitza thermal resistance and our sample size together make 
the temperature relaxation time to the bath greater than the internal relaxation 
time. Regarding sample orientation, because the Jahn–Teller distortion occurs 
from a cubic structure, the particular principal axis selected as the c axis on cooling 
could depend on aspects of the cooling procedure, the degree of mechanical 
clamping and the internal stresses in the crystal. For reasons to be discussed below, 
we believe that the C(T,H) measurements reported here are on a sample cooled to 
achieve a single domain.

Regarding a possible nuclear contribution, the largest effect will most likely 
come from the Cu moments30, and may become appreciable below 0.15 K. To 
accurately segregate the nuclear from the electronic contribution, however, it is 
necessary to enter a temperature regime where the 1/T2 nuclear Schottky tail can 
be cleanly distinguished. We found that below 0.10 K, however, the thermal time 
constant internal to the calorimeter became larger than the time constant to the 
bath, making the extraction of a nuclear contribution impossible. In addition, 

it is not clear that the electronic contribution in the vicinity of the QCP will 
not also diverge, presenting an experimental challenge beyond the scope of the 
present work. For the present work, we note only that that the high-temperature 
tail of a nuclear Schottky anomaly will vary as H2, which is not observed in our 
measurements.

Neutron scattering. Elastic neutron scattering was performed on the HB1A 
triple-axis spectrometer at the High Flux Isotope Reactor, Oak Ridge National 
Laboratory, USA. A 44 mg single crystal of K2PbCu(NO2)6 was attached to an 
oxygen-free copper holder using copper wires and aligned at room temperature 
using a Multiwire X-ray Laue backscattering machine with the cubic directions 
[110] and [001] in the scattering plane. The mount was attached at the bottom 
of a 3He insert reaching a base temperature of T =  0.29 K. The wavelength of 
the incident neutron beam was set to 2.363 Å using a double-bounce PG(002) 
monochromator and the scattered beam was analysed by PG(002) crystals. The 
beam was collimated to 40’ (respectively, 270’) before (respectively, after) the 
sample.

At room temperature, the strong (002), (220) and (004) nuclear Bragg 
reflections of our crystal are resolution limited with rocking curves showing 
full-width at half-maximum of 0.38° or lower. At Ts1 =  279 K and Ts2 =  273 K, the 
compound exhibits the expected Jahn–Teller transitions15. For T >  Ts1, the crystal 
structure is cubic (space group Fm3, a =  10.692 Å), whereas below T <  Ts2, the 
crystal structure is triclinic (space group C-1). Below Ts2, it remains possible to 
index nuclear Bragg reflections with respect to the reciprocal lattice vectors of  
the cubic structure τ =  (h,k,l)c with additional super-lattice reflections at  
q =  τ ±  ks with ks =  (1/2,1/2,1/2)c. In our experiment, the cubic-to-triclinic 
distortion is readily apparent on nuclear Bragg reflections (220)c and (002)c  
as pronounced non-Gaussian peak shapes, leading to an effective rocking-curve 
full-width at half-maximum ranging from 1.0° to 1.2° below Ts2.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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