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Fractional excitations in the square-lattice
quantum antiferromagnet
B. Dalla Piazza1*, M. Mourigal1,2,3*, N. B. Christensen4,5, G. J. Nilsen1,6, P. Tregenna-Piggott5,
T. G. Perring7, M. Enderle2, D. F. McMorrow8, D. A. Ivanov9,10 and H. M. Rønnow1,11

Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real
materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of
interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example,
exhibits a striking anomaly of hitherto unknown origin in itsmagnetic excitation spectrum. This quantum e�ectmanifests itself
for excitations propagating with the specific wavevector (π ,0). We use polarized neutron spectroscopy to fully characterize
the magnetic fluctuations in the metal-organic compound Cu(DCOO)2·4D2O, a known realization of the quantum square-
lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which
we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the
existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous
wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence
of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence
of frustration.

A fascinating manifestation of quantum mechanics is the
emergence of elementary excitations carrying fractional
quantum numbers. Fractional excitations were a central

ingredient to understand the fractional quantum Hall effect1,
and have been investigated in a range of systems, including
conducting polymers2, bilayer graphene3, cold atomic gases4 and
low-dimensional quantum magnets5,6. Among the latter class of
systems, the spin-1/2 Heisenberg antiferromagnet chain (HAFC)
is perhaps the simplest model for which the ground state and the
excitations are known exactly7–9. Excitations of the spin-1/2 HAFC
created by an elementary1S=1 process are radically different from
spin waves, the coherent propagation of a flipped spin, and are
pairs of unbound fractional quasiparticles known as spinons, each
carrying a S=1/2 quantum number. The existence of spinons in the
spin-1/2 HAFC has been confirmed experimentally in a number of
quasi-1D materials10,11, but observing their 2D and 3D analogues is
an ongoing challenge6. So far, the main candidate systems comprise
geometrically frustrated magnets on the triangular12 or kagome13–15
lattices. In this work, we take a frustration-free route and focus on
the quantum (spin-1/2) square-lattice Heisenberg antiferromagnet
(QSLHAF), one of the most fundamental models in magnetism. It
is defined by the Hamiltonian

H= J
∑
〈i,j〉

Si ·Sj (1)

where J is the antiferromagnetic exchange interaction between
nearest-neighbour spins described by spin S= 1/2 operators Si
and Sj. We provide experimental and theoretical evidence that

even in this simplest of 2D models deconfined fractional S=1/2
quasiparticles can be identified at high energies, where they
modify the short-wavelength spin dynamics and are responsible
for a significant quantum anomaly that cannot be captured by
conventional spin-wave theory.

It may seem surprising that the QSLHAF is a candidate for
hosting fractional excitations, as at a superficial level its long-
range magnetic order resembles that of a classical system. The
elementary excitations of this ‘Néel state’, when calculated using
semi-classical spin-wave theory (SWT), are bosonic quasiparticles,
known as magnons: the one-magnon spectrum is gapless, with two-
magnon excitations occupying a continuum at higher energy. The
interaction between magnons is relatively weak and leads to an
upward renormalization of the magnon energy and to scattering
between two-magnon states16,17. One- and two-magnon excitations,
respectively, correspond to fluctuations perpendicular (transverse)
and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum effects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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Figure 1 | Overview of the magnetic excitation spectrum of CFTD and its interpretation in terms of spin waves or spatially extended fractional
excitations. a, Momentum and energy dependence of the (total) dynamic structure factor S(q,ω) measured by time-of-flight inelastic neutron scattering.
Square boxes (black dashed) highlight the (π ,0) and (π/2,π/2) wavevectors. a.u., arbitrary units. b,d, Corresponding distributions of real-space fractional
quasiparticle-pair separations, as calculated in the |SF〉 variational state (equation (3)), evidencing, respectively, the unbound and bound nature of the pair
excitations. c,e, Pictorial representation of a quasiparticle-pair excitation and a spin-wave excitation (magnon), respectively.

using bosonic21 or fermionic22,23 fractional quasiparticles have
long been proposed, and it has been shown that the presence
of conventional classical long-range order does not hinder the
possibility of fractional excitations24,25. By analogy with the 1D case,
these are referred to as spinons.

The magnetic excitation spectrum of various realizations of the
QSLHAF have been investigated using neutron spectroscopy,
including the parent compounds of the high-Tc cuprate
superconductors Sr2CuO2Cl2 (refs 26,27) and La2CuO4 (refs 28,29),
Sr2Cu3O4Cl2 (ref. 30) and the metal-organic compounds
Cu(pz)2(ClO4)2 (refs 31,32) and Cu(DCOO)2·4D2O (CFTD;
refs 33,34) considered here. These experiments have established
that, although SWT gives an excellent account of the low-
energy spectrum, a glaring anomaly is present at high energy
for wavevectors q in the vicinity of (π , 0), where q= (qx , qy) is
expressed in the square-lattice Brillouin zone of unit length 2π .
The anomaly is evident as a complete wipe out of intensity (Fig. 1a)
of the otherwise sharp excitations27,29,32,34 and as a 7% downward
dispersion along the magnetic zone boundary connecting the
(π/2, π/2) and (π , 0) wavevectors for Sr2Cu3O4Cl2 (refs 30,33)
and CFTD. Unambiguously identifying the origin of this effect
is complicated by the presence, in some of these materials, of
further small exchange terms such as electronic ring-exchange27,29,
further neighbour exchange31,32 or interpenetrating sublattices30. In
contrast, the deviations observed in CFTD agree with numerical
results obtained by series expansion35,36, quantum Monte Carlo37,38
and exact diagonalization39 methods for the model of equation (1),
proving that the anomaly is in this case intrinsic34. Owing to
the similarities of the measured anomaly to some aspects of the
predicted fermionic RVB excitations treated in the random phase
approximation23, it has been speculated that the anomaly might
be related to fractionalized spin excitations29,34. Given the greatly
enlarged family of experimentally accessible physical realizations of
QSLHAF owing to the advent of high-resolution resonant inelastic

X-ray scattering40–43 and the fundamental nature of the QSLHAF, it
is clearly desirable to develop a microscopic understanding of the
origin of the anomaly.

Here we present polarized neutron scattering results on CFTD
which establish the existence of a spin-isotropic continuum at
(π , 0), which contrasts sharply with the dominantly longitudinal
continuum at (π/2,π/2) and with the broken spin symmetry of the
ground state. Using a fermionic description of the spin dynamics
based on a Gutzwiller-projected variational approach, we argue that
the continuum at (π , 0) is a signature of spatially extended pairs of
fractional S= 1/2 quasiparticles (Fig. 1b,c). At other wavevectors,
including (π/2, π/2) (Fig. 1d), our approach yields bound pairs
of these fractional quasiparticles and so recovers a conventional
magnon spectrum, in agreement with SWT (Fig. 1e).

Neutron scattering experiments were performed on single crys-
tals of CFTD using unpolarized time-of-flight spectroscopy (Fig. 1)
and triple-axis spectroscopy with longitudinal polarization analysis
(see Supplementary Methods). The results of our polarized exper-
iment are presented in Fig. 2 through the energy dependence ω of
the diagonal components of the dynamic structure factor S(q,ω).
By combiningwavevectors fromdifferent equivalent Brillouin zones
(see SupplementaryMethods), we can reconstruct the total dynamic
structure factor (Fig. 2a,e), and separate contributions from spin
fluctuations that are transverse to and along (Fig. 2b,c,f,g) the or-
dered moment. Within SWT, the resulting transverse and longi-
tudinal spectra are dominated by one-magnon and two-magnon
excitations, respectively. At (π/2,π/2), and at an excitation energy
of ω = 2.38(2) J , we observe a sharp, energy resolution-limited
peak (1ω= 1.47(5)meV = 0.24(1) J , FWHM) which is the sig-
nature of a long-lived, single-particle excitation (Fig. 2e). Most of
the observed spectral weight is in the resolution-limited peak of
the transverse channel S⊥(q,ω)≡Sxx(q,ω)+Syy(q,ω) (Fig. 2f),
while a weak continuum extends from ω/J ≈ 2.3 to 3.4, with a
maximum around ω/J ≈2.6 in the longitudinal channel, Szz(q,ω)
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Figure 2 | Summary of the polarized neutron scattering data.
a–c,e–g, Energy dependence of the total, transverse and longitudinal
contributions to the dynamic structure factor, respectively, at constant
wavevectors q=(π ,0) (a–c) and q=(π/2,π/2) (e–g) measured by
polarized neutron scattering on CFTD. The solid lines indicate
resolution-limited Gaussian fits, while the dashed lines are empirical
lineshapes used as guides-to-the-eye. d,h, Transverse dynamic structure
factor with subtracted resolution-limited Gaussian fits at (π ,0) and
(π/2,π/2), respectively. Error bars correspond to one standard deviation.

(Fig. 2g). In contrast, the response at (π , 0) exhibits a pro-
nounced high-energy tail, starting right above the peak maximum
at ω/J=2.19(2), and extending up to ω/J ≈ 3.8. This tail carries
40(12)% of the total spectral weight at (π , 0) (Fig. 2a), and is
evident in both the transverse (Fig. 2b) and longitudinal (Fig. 2c)
channels. To isolate the continuous component in the transverse
channel we subtract resolution-limited Gaussians corresponding to
sharp, single-particle responses, with the results shown in Fig. 2d,h.
This analysis reveals the important fact that the transverse contin-
uum at (π , 0) is within error twice the longitudinal contribution
(Fig. 2d). Thus, we can conclude that the continuum at (π , 0)
arises from correlations which are isotropic in spin space, with
S⊥(q, ω)= 2Szz(q, ω), whereas by contrast the continuum con-
tribution at (π/2, π/2) is fully contained in the longitudinal
channel (Fig. 2h).

The pronounced asymmetric and non-Lorentzian line shape of
the continuum at (π , 0) cannot be accounted for by conventional
effects, even including instrumental resolution. SWT predicts that
magnon interactions transfer up to 20% of the transverse spectral
weight at the zone boundary from the sharp one-magnon peak
to a higher energy continuum of three-magnon states17. However,
the resulting line shape differs radically from our observations,
does not coincide with the longitudinal response, and does not
seem to depend significantly on the wavevector along the zone
boundary. Spontaneous magnon decays can in principle produce
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Figure 3 | Schematic representation of local spin flip and spatially
separated quasiparticle-pair excitations in the Gutzwiller-projected
approach. a, The mean-field wavefunction |ψMF〉 is shown as a
resonating-valence-bond liquid (for better visualization, all singlets are
shown as nearest-neighbour and the Néel order is ignored). Configurations
containing doubly occupied sites (right-hand side) are discarded by the
Gutzwiller projection PG. b, Local spin flips create triplets out of resonating
singlets. Configurations from |ψMF〉 originally containing doubly occupied
sites are still projected out (right-hand side). c, Non-local quasiparticle-pair
excitations are constructed as projected particle–hole excitations. At a
non-zero separation r, they contribute by annihilating a doubly occupied
site with a hole, leaving two separated spin ups. After projection, the only
configurations left are the ones constructed from |ψMF〉 that contained one
empty and one doubly occupied site (right-hand side).

an asymmetric line shape, but are prohibited in this case by the
collinearity of the magnetic order16,44. Instead, recent quantum
Monte Carlo work45 suggests looking for explanations of the contin-
uum contribution to the dynamic structure factor at (π , 0) involving
the deconfinement of fractional excitations. This is further moti-
vated by the observed coexistence of sharp two-spinon bound states
with a broad multi-spinon continuum, at comparable energy ranges
but different wavevectors, in the quasi-2D materials Cs2CuCl412,46
and LiCuVO4

47, made of strongly coupled Heisenberg chains.
To explore whether fractionalization of magnons can account for

the (π , 0) anomaly in the QSLHAF, we use a theoretical approach
based on Gutzwiller-projected variational wavefunctions48,49. In this
approach, spin operators are transformed into pairs of S= 1/2
fermionic operators so that equation (1) becomes

H=−
J
2
∑
〈i,j〉,σ ,σ ′

c†
iσ cjσ c

†
iσ ′ciσ ′+constant (2)

where c†
iσ (ciσ ) creates (annihilates) an electron with spin σ

at site i. This transformation embeds the original spin Hilbert
space into an electronic Hilbert space which also contains non-
magnetic sites occupied by zero or two electrons. As a result,
equations (1) and (2) are only equivalent on the restricted
electronic subspace with half electron filling and no empty sites
or double occupancies. This constraint can be enforced exactly
by the so-called Gutzwiller projector PG. The advantage of this
approach is that pairs of fractional S=1/2 quasiparticles (for
the original spin Hamiltonian) can be naturally constructed
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Figure 4 | Variational excitation spectra of the Gutzwiller-projected trial wavefunctions. a,b, Transverse dynamic structure factor for the |SF+N〉 (a) and
|SF〉 (b) states with lattice sizes of 24×24 and 32×32 respectively. c, The magnon-like dispersion extracted from a (red points) compared to the
experimental CFTD data34 (blue squares, error bars correspond to one standard deviation), spin-wave theory with first-order (solid black line) and
third-order61 (green triangles) 1/S corrections, series expansion36 (dashed purple line) and quantum Monte Carlo38 (cyan diamonds). The experimental
data is scaled using J=6.11 meV. d, Zoom-in on the magnon-like mode dispersion along the magnetic zone boundary.

as particle–hole excitations in the electronic space, projected a
posteriori by PG onto spin configurations with exactly one electron
per site50. The projectionmay be approximated using the Gutzwiller
approximation22 or the random phase approximation23. In this work
we choose to implement the projection exactly using the numerical
variational Monte Carlo technique49. (The source code used to
perform the variational Monte Carlo calculations is available at
https://github.com/epfl-lqm/gpvmc.)

The quartic electronic operator in equation (2) is treated
by a mean-field decoupling where the averages 〈c†

iσ ciσ 〉 and
〈c†

iσ cjσ 〉 are considered. We adopt the following Ansätze for
their real-space dependencies: 〈c†

iσ ciσ 〉 corresponds to a staggered
Néel order parameter (N) and 〈c†

iσ cjσ 〉 to a staggered flux (SF)
threading square plaquettes of the lattice51–53 (see Supplementary
Methods for exact definitions and more details). To each average
corresponds a variational parameter whose value is optimized to
minimize the energy (equation (1)) of the Gutzwiller-projected
state, |SF+N〉=PG|ψMF〉. The corresponding mean-field electronic
ground-state |ψMF〉 contains empty and doubly occupied sites
and reads

|ψMF〉=
∏

k∈MBZ

γ †
k↑−γ

†
k↓−|0〉

where |0〉 is the electron vacuum and where the γ (†)kσ± operators are
linear combinations of c(†)kσ operators that diagonalize the mean-
field electronic Hamiltonian. The product over the wavevector k
is restricted to the magnetic Brillouin zone (MBZ), a result of the
antiferromagnetic unit-cell-doubling. Consequently ‘±’ denotes the
band index. In the present case of half electron filling, the ‘−’
band is fully occupied, and there is a finite gap to the empty ‘+’
band for non-zero Néel order parameter. The overall minimization
procedure is carried out numerically using variational Monte Carlo
and leads to a |SF+N〉 state with variational energyESF+N=−0.664J

and staggered moment 0.75S per site48,54. This can be compared to
more precise Green’s function Monte Carlo studies for equation (1)
that obtained −0.669J and 0.615S for the ground-state energy and
the staggered moment, respectively55,56.

The optimized |SF+N〉 state, although giving a good estimate
for the ground-state energy, does not have the correct long-distance
behaviour for the transverse equal-time correlator 〈S+(0)S−(r)〉,
predicted by SWT to decay as a power-law16. This algebraic decay
is a robust long-wavelength prediction and has been implemented
in variational magnetic trial wavefunctions in the past57,58. Instead,
as the excitation spectrum of the mean-field electronic ground state
is gapped, 〈S+(0)S−(r)〉 decays exponentially after projection. We
conjecture that the asymptotic behaviour of the spin correlator
is important for the deconfinement of fractional excitations. To
obtain insight into the influence of long-distance spin fluctuations,
we consider a distinct variational state, |SF〉, for which the finite
staggered flux is retained but the Néel order is reduced to
zero. |SF〉 is a quantum spin-liquid singlet of variational energy
ESF=−0.638J that exhibits a power-law decay of its transverse
spin correlations59,60.

We now turn to the construction of transverse (S= 1) spin
excitations for the above variational states, aiming at comparing
their respective dynamic structure factor with the results of
Fig. 2. The variational transverse spin excitations are obtained
as superpositions of projected particle–hole excitations with
momentum q:

|q,n,+〉=
∑
k∈MBZ

φn
kq|k,q〉, |k,q〉=PGγ

†
k↑+γk−q↓−|ψMF〉

where the states |k, q〉 are generated by destroying a spin-down
quasiparticle in the ‘−’ band and creating a spin-up quasiparticle
in the ‘+’ band. The coefficients φn

kq are obtained by diagonalizing
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the original Hamiltonian (equation (1)) projected onto the non-
orthonormal set of states |k,q〉 and correspond to the eigenenergies
E+qn. Expressing the Fourier-space quasiparticle operators γkσ±
using the real-space ciσ operators, we note that the variational spin
excitations contain both local spin flips S+i PG|ψMF〉=PGc†

i↑ci↓|ψMF〉

(Fig. 3b) and spatially separated particle–hole excitations,
PG c†

j+r↑cj↓|ψMF〉 (Fig. 3c). The dynamic structure factor of the
transverse spin excitations is calculated as

S+−(q,ω)=
∑
n

∣∣∣〈q,n,+|S+q |GS〉∣∣∣2 δ(ω−E+qn+EGS

)
where |GS〉 stands either for |SF+N〉 or |SF〉. We use the identity
S⊥ ≡ S+− = S−+, valid for both variational ground states, to
compare the transverse dynamic structure factor of the variational
states |SF+N〉 and |SF〉 with the experimental results presented in
Fig. 2. A similar approach also allows one to obtain the longitudinal
(S=0) dynamic structure factor (see Supplementary Methods).

The transverse dynamic structure factor S⊥(q,ω) of the |SF+N〉
state is shown in Fig. 4a, as obtained by variational Monte Carlo
on a finite lattice of 24× 24 sites. The dominant feature of the
spectrum is a low-energy magnon-like mode, which resembles

the experimental results of Fig. 1a. In particular, our calculation
produces a dispersion along the magnetic zone boundary in better
quantitative agreement with the 7% dispersion observed in ref. 34
than any other theoretical method (Fig. 4c,d). This confirms
that magnons can be quantitatively interpreted as bound pairs of
fractional S=1/2 quasiparticles.

However, the |SF + N〉 transverse dynamic structure factor
exhibits a gap at (π , π) and no continuum above the magnon
branch at (π , 0). We believe that this is an artefact of replacing
the spontaneous symmetry breaking by a Néel mean-field order
parameter: this ansatz, as mentioned above, distorts the long-
distance asymptotics of spin correlations. Indeed, if we reduce
the Néel mean-field parameter of the |SF + N〉 state, then the
high-energy excitations at (π , 0) move down in energy (see
Supplementary Methods). When the Néel field vanishes (that is, in
the |SF〉 state), they evolve into a succession of modes distributed
on an extended energy range above the spin-wave mode (shown
in Fig. 4b for a 32 × 32 lattice). This behaviour contrasts the
situation at (π/2,π/2), where the high-energy transverse excitations
completely lose their spectral weight on reducing the Néel field
and only the spin-wave mode remains in the |SF〉 state. At (π ,π),
the lowest mode moves down, reaching negative energy, which
indicates an instability of the |SF〉 state towards Néel ordering.
We therefore suggest that the continuum of excitations observed
at (π , 0) is conditionally dependent on power-law transverse
spin correlations and that it corresponds to deconfined fractional
spin-1/2 quasiparticles.

To support this interpretation, we consider in Fig. 5a,b the
system-size dependence of S⊥(q,ω). Although the excitations at
(π/2, π/2) form a single sharp mode with energy and intensity
nearly independent of the system size, the number of modes
at (π , 0) and their relative weights are strongly modified on
increasing the number of sites. This behaviour is consistent with the
development of a continuum of fractional quasiparticles at (π , 0) in
the thermodynamic limit.

Having established that our Gutzwiller approach depending
on wavevector produces respectively sharp and continuum-like
excitations from the |SF〉 state, we analyse their real-space
structure to gain further insight into their nature. We consider
their overlap with projected real-space particle–hole excitations
|q,r,+〉=PG

∑
R eiq·Rc

†
R+r↑cR↓|ψMF〉, where a Fourier transformation

was applied to reflect translation invariance. In this formalism,
the most local projected particle–hole pair is the spin-flip state
S+q |SF〉=|q, 0,+〉 corresponding to a magnon while non-local pairs
are characterized by a finite separation r. Therefore, the degree of
deconfinement of a fractional S= 1/2 quasiparticles pair can be
characterized using the spatial extent of its overlap with projected
real-space particle–hole excitations 〈q, r,+|q, n,+〉. Because the
continuum in Fig. 5a is populated by different sets of discrete
modes for the various system sizes considered, we choose to
evaluate the degree of deconfinement through a single q-specific
averaged quantity

ρq(r)=
∑
n

∣∣〈q,r,+|q,n,+〉〈q,n,+|S+q |SF〉∣∣2 (3)

where the aforementioned overlap is weighted by the intensity
of the transverse spin excitation in the dynamic structure factor,
thus only accounting for modes proportionally to their spectral
weight. The spatial profile of ρq(r) for the magnetic-zone-boundary
wavevectors, shown in Fig. 1b,d, reveals much more extended
fractional S=1/2 quasiparticles pairs at (π , 0) than at (π/2,π/2).
This is confirmed by the system-size dependence of the radially
integrated normalized distribution Pq(r)=

∑
|r′ |<r ρq(r′), plotted in

Fig. 5c,d. At (π/2, π/2), Pq(r) saturates at a distance, r , that is
nearly independent of the system size, whereas at (π , 0) it does
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so at a distance that increases with the number or sites. Similarly,
the ‘root-mean-square’ fractional quasiparticles pair separation
rq=

[∑
r |r|2ρq(r)/

∑
r ρq(r)

]1/2, presented in Fig. 5e, grows nearly
linearly with the system size for (π , 0), whereas it has amuchweaker
size dependence for (π/2,π/2).

Taken together, our real-space results for the |SF〉 state show
that spin excitations at (π/2, π/2) can indeed be considered
as bound pairs of S = 1/2 quasiparticles with confined spatial
extent. In contrast, at (π , 0), the strong system-size dependence
of the spin excitations spatial extent indicates the perhaps only
marginal deconfinement of fractional quasiparticles in two spatial
dimensions. Note that even in the absence of long-range Néel
order, deconfinement happens only at the special point (π , 0) and
no continuum develops at (π , π), as would be naively expected
for an algebraic spin liquid. This indicates that the deconfined
(π , 0) excitations should be considered only as remnants of the
underlying unprojected deconfined particle–hole excitations. This
suggests that the QSLHAF ground state can still be understood as
a conventional Néel state different from the AF* state described
in refs 24,25, where magnons and spinons represent two different
branches of excitations. We do not attempt to extract power laws
from the numerical data, as the variational |SF〉 state mimics the
long-distance spin correlations only qualitatively.

Combining our polarized neutron scattering and theoretical
results provides evidence that, even in the simplest of 2D spin
models, deconfined fractional S = 1/2 quasiparticles can be
identified at high energies, and account for the quantum anomaly
observed in a broad range of experimental realizations of the square-
lattice Heisenberg antiferromagnet. This insight raises important
theoretical and experimental questions. First, how to obtain explicit
quasiparticle deconfinement out of themagnetically ordered ground
state of the QSLHAF? How will the excitations uncovered here
evolve on weakening magnetic exchange in one direction, hence
approaching the 1D limit? Our present work focused on the nearest-
neighbour Heisenberg model, an insulator obtained in the strong
Coulomb repulsion limit of a one-band Hubbard model. It will be
interesting to track the fractional quasiparticles in systems closer to
an insulator–metal transition, and eventually on doping. Given that
fractional spin excitations are identified at high energies, one may
speculate whether weak 2D Mott insulators could, in certain areas
of momentum space, host a phenomenon similar to the observed
spin-charge separation in 1D (ref. 62).

Received 10 April 2014; accepted 29 October 2014; 
published online 23 December 2014

References
1. Laughlin, R. B. Nobel lecture: Fractional quantization. Rev. Mod. Phys. 71,

863–874 (1999).
2. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev.

Lett. 42, 1698–1701 (1979).
3. Hou, C-Y., Chamon, C. & Mudry, C. Electron fractionalization in

two-dimensional graphene like structures. Phys. Rev. Lett. 98,
1698–1701 (1979).

4. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an
optical lattice. Nature 472, 307–312 (2011).

5. Baskaran, G., Zou, Z. & Anderson, P. W. The resonating valence bond state and
high-Tc superconductivity—a mean field theory. Solid State Commun. 63,
973–976 (1987).

6. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
7. Bethe, H. Zur Theorie der Metalle. Z. Phys. A 71, 205–226 (1931).
8. Faddeev, L. & Takhtajan, L. What is the spin of a spin wave? Phys. Lett. A 85,

375–377 (1981).
9. Müller, G., Thomas, H., Beck, H. & Bonner, J. C. Quantum spin dynamics of

the antiferromagnetic linear chain in zero and nonzero magnetic field.
Phys. Rev. B 24, 1429–1467 (1981).

10. Tennant, D. A., Cowley, R. A., Nagler, S. E. & Tsvelik, A. M. Measurement of
the spin-excitation continuum in one-dimensional KCuF3 using neutron
scattering. Phys. Rev. B 52, 13368–13380 (1995).

11. Mourigal, M. et al. Fractional spinon excitations in the quantum Heisenberg
antiferromagnetic chain. Nature Phys. 9, 435–441 (2013).

12. Coldea, R., Tennant, D. A., Tsvelik, A. M. & Tylczynski, Z. Experimental
realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 86,
1335–1338 (2001).

13. Han, T-H. et al. Fractionalized excitations in the spin-liquid state of a
kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

14. Jeong, M. et al. Field-induced freezing of a quantum spin liquid on the kagome
lattice. Phys. Rev. Lett. 107, 237201 (2011).

15. Kozlenko, D. P. et al. From quantum disorder to magnetic order in an S=1/2
kagome lattice: A structural and magnetic study of herbertsmithite at high
pressure. Phys. Rev. Lett. 108, 187207 (2012).

16. Manousakis, E. The spin-1/2 Heisenberg antiferromagnet on a square
lattice and its application to the cuprous oxides. Rev. Mod. Phys. 63,
1–62 (1991).

17. Canali, C. M. &Wallin, M. Spin–spin correlation functions for the
square-lattice Heisenberg antiferromagnet at zero temperature. Phys. Rev. B 48,
3264–3280 (1993).

18. Reger, J. D. & Young, A. P. Monte Carlo simulations of the spin-1/2 Heisenberg
antiferromagnet on a square lattice. Phys. Rev. B 37, 5978–5981 (1988).

19. Hamer, C. J., Weihong, Z. & Arndt, P. Third-order spin-wave theory for the
Heisenberg antiferromagnet. Phys. Rev. B 46, 6276–6292 (1992).

20. Anderson, P. W., Baskaran, G., Zou, Z. & Hsu, T. Resonating valence-bond
theory of phase transitions and superconductivity in La2CuO4-based
compounds. Phys. Rev. Lett. 58, 2790–2793 (1987).

21. Auerbach, A. & Arovas, D. P. Spin dynamics in the square-lattice
antiferromagnet. Phys. Rev. Lett. 61, 617–620 (1988).

22. Hsu, T. C. Spin waves in the flux-phase description of the S=1/2 Heisenberg
antiferromagnet. Phys. Rev. B 41, 11379–11387 (1990).

23. Ho, C-M., Muthukumar, V. N., Ogata, M. & Anderson, P. W. Nature of spin
excitations in two-dimensional Mott insulators: Undoped cuprates and other
materials. Phys. Rev. Lett. 86, 1626–1629 (2001).

24. Balents, L., Fisher, M. P. A. & Nayak, C. Dual order parameter for the nodal
liquid. Phys. Rev. B 60, 1654–1667 (1999).

25. Ghaemi, P. & Senthil, T. Neél order, quantum spin liquids, and quantum
criticality in two dimensions. Phys. Rev. B 73, 054415 (2006).

26. Greven, M. et al. Neutron scattering study of the two-dimensional spin-S=1/2
square-lattice Heisenberg antiferromagnet Sr2CuO2Cl2. Z. Phys. B 96,
465–477 (1995).

27. Plumb, K. W., Savici, A. T., Granroth, G. E., Chou, F. C. & Kim, Y-J.
High-energy continuum of magnetic excitations in the two-dimensional
quantum antiferromagnet Sr2CuO2Cl2. Phys. Rev. B 89, 180410 (2014).

28. Coldea, R. et al. Spin waves and electronic interactions in La2CuO4. Phys. Rev.
Lett. 86, 5377–5380 (2001).

29. Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous
high-energy spin excitations in the high-Tc superconductor-parent
antiferromagnet La2CuO4. Phys. Rev. Lett. 105, 247001 (2010).

30. Kim, Y. J. et al. Neutron scattering study of Sr2Cu3O4Cl2. Phys. Rev. B 64,
024435 (2001).

31. Tsyrulin, N. et al. Quantum effects in a weakly frustrated S=1/2
two-dimensional Heisenberg antiferromagnet in an applied magnetic field.
Phys. Rev. Lett. 102, 197201 (2009).

32. Tsyrulin, N. et al. Two-dimensional square-lattice S=1/2 antiferromagnet
Cu(Pz)2(ClO4)2. Phys. Rev. B 81, 134409 (2010).

33. Rønnow, H. M. et al. Spin dynamics of the 2D spin-1/2 quantum
antiferromagnet copper deuteroformate tetradeuterate (CFTD). Phys. Rev. Lett.
87, 037202 (2001).

34. Christensen, N. B. et al. Quantum dynamics and entanglement of spins on a
square lattice. Proc. Natl Acad. Sci. USA 104, 15264–15269 (2007).

35. Singh, R. R. P. & Gelfand, M. P. Spin-wave excitation spectra and spectral
weights in square lattice antiferromagnets. Phys. Rev. B 52,
R15695–R15698 (1995).

36. Zheng, W., Oitmaa, J. & Hamer, C. J. Series studies of the spin-1/2 Heisenberg
antiferromagnet at T=0: Magnon dispersion and structure factors.
Phys. Rev. B 71, 184440 (2005).

37. Syljuåsen, O. F. & Rønnow, H. M. Quantum renormalization of high-energy
excitations in the 2D Heisenberg model. J. Phys. Condens. Matter 12,
L405–L408 (2000).

38. Sandvik, A. W. & Singh, R. R. P. High-energy magnon dispersion and
multimagnon continuum in the two-dimensional Heisenberg antiferromagnet.
Phys. Rev. Lett. 86, 528–531 (2001).

39. Lüscher, A. & Läuchli, A. M. Exact diagonalization study of the
antiferromagnetic spin-1/2 Heisenberg model on the square lattice in a
magnetic field. Phys. Rev. B 79, 195102 (2009).

40. Guarise, M. et al.Measurement of magnetic excitations in the two-dimensional
antiferromagnetic Sr2CuO2Cl2 insulator using resonant X-ray scattering:
Evidence for extended interactions. Phys. Rev. Lett. 105, 157006 (2010).

NATURE PHYSICS | VOL 11 | JANUARY 2015 | www.nature.com/naturephysics 67

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3172
www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3172

41. Dalla Piazza, B. et al. Unified one-band Hubbard model for magnetic and
electronic spectra of the parent compounds of cuprate superconductors.
Phys. Rev. B 85, 100508 (2012).

42. Ishii, K. et al.High-energy spin and charge excitations in electron-doped
copper oxide superconductors. Nature Commun. 5, 3714 (2014).

43. Braicovich, L. et al.Magnetic excitations and phase separation in the
underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic
X-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

44. Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: Spontaneous magnon
decays. Rev. Mod. Phys. 85, 219–242 (2013).

45. Tang, Y. & Sandvik, A. W. Confinement and deconfinement of spinons in two
dimensions. Phys. Rev. Lett. 110, 217213 (2013).

46. Kohno, M., Starykh, O. A. & Balents, L. Spinons and triplons in spatially
anisotropic frustrated antiferromagnets. Nature Phys. 3, 790–795 (2007).

47. Enderle, M. et al. Two-spinon and four-spinon continuum in a frustrated
ferromagnetic spin-1/2 chain. Phys. Rev. Lett. 104, 237207 (2010).

48. Gros, C. Superconductivity in correlated wave functions. Phys. Rev. B 38,
931–934 (1988).

49. Gros, C. Physics of projected wavefunctions. Ann. Phys. 189, 53–88 (1989).
50. Li, T. & Yang, F. Variational study of the neutron resonance mode in the cuprate

superconductors. Phys. Rev. B 81, 214509 (2010).
51. Dmitriev, D. V., Krivnov, V. Y., Likhachev, V. N. & Ovchinnikov, A. A. Variation

function with vortexes in the Heisenberg 2-dimensional antiferromagnetic
model. Phys. Solid State 38, 397 (1996) [Translated: Fiz. Tverd. Tela 38,
397 (1996)].

52. Wen, X-G. & Lee, P. A. Theory of underdoped cuprates. Phys. Rev. Lett. 76,
503–506 (1996).

53. Nayak, C. Density-wave states of nonzero angular momentum. Phys. Rev. B 62,
4880–4889 (2000).

54. Lee, T. K. & Feng, S. Doping dependence of antiferromagnetism in La2CuO4:
A numerical study based on a resonating-valence-bond state. Phys. Rev. B 38,
11809–11812 (1988).

55. Trivedi, N. & Ceperley, D. M. Ground-state correlations of quantum
antiferromagnets: A Green-function Monte Carlo study. Phys. Rev. B 41,
4552–4569 (1990).

56. Calandra Buonaura, M. & Sorella, S. Numerical study of the two-dimensional
Heisenberg model using a Green function Monte Carlo technique with a fixed
number of walkers. Phys. Rev. B 57, 11446–11456 (1998).

57. Liu, Z. & Manousakis, E. Variational calculations for the square-lattice
quantum antiferromagnet. Phys. Rev. B 40, 11437–11440 (1989).

58. Franjic, F. & Sorella, S. Spin-wave wave function for quantum spin models.
Prog. Theor. Phys. 97, 399–406 (1997).

59. Paramekanti, A., Randeria, M. & Trivedi, N. High-Tc superconductors:
A variational theory of the superconducting state. Phys. Rev. B 70,
054504 (2004).

60. Ivanov, D. A. Resonating-valence-bond structure of Gutzwiller-projected
superconducting wave functions. Phys. Rev. B 74, 024525 (2006).

61. Syromyatnikov, A. V. Spectrum of short-wavelength magnons in a
two-dimensional quantum Heisenberg antiferromagnet on a square
lattice: Third-order expansion in 1/S. J. Phys. Condens. Matter 22,
216003 (2010).

62. Kim, C. et al. Observation of spin-charge separation in one-dimensional
SrCuO2. Phys. Rev. Lett. 77, 4054–4057 (1996).

Acknowledgements
We gratefully acknowledge fruitful discussions with C. Broholm, L. P. Regnault,
S. Sachdev and M. Zhitomirsky. Work in EPFL was supported by the Swiss National
Science Foundation, the MPBH network, and European Research Council grant
CONQUEST. The work of D.A.I. was supported by the Swiss National Foundation
through the NCCR QSIT. Computational work was supported by the Swiss National
Supercomputing Center (CSCS) under project ID s347. Work at Johns Hopkins
University was supported by the US Department of Energy, Office of Basic Energy
Sciences, Division of Material Sciences and Engineering under grant
DE-FG02-08ER46544. N.B.C. was supported by the Danish Agency for Science,
Technology and Innovation under DANSCATT.

Author contributions
B.D.P. and D.A.I. performed the theoretical work. B.D.P. wrote and ran the numerical
calculations. M.M., N.B.C., M.E. and T.G.P. performed the experiments. G.J.N., P.T-P. and
N.B.C. grew the samples. M.M. analysed the data guided by M.E., N.B.C. and H.M.R.
B.D.P., M.M., D.A.I. and H.M.R. wrote the paper with contributions from all co-authors.
D.F.M., D.A.I. and H.M.R. supervised the project.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to B.D.P. or M.M.

Competing financial interests
The authors declare no competing financial interests.

68 NATURE PHYSICS | VOL 11 | JANUARY 2015 | www.nature.com/naturephysics

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3172
http://www.nature.com/doifinder/10.1038/nphys3172
http://www.nature.com/reprints
www.nature.com/naturephysics

	Fractional excitations in the square-lattice quantum antiferromagnet
	Figure 1 Overview of the magnetic excitation spectrum of CFTD and its interpretation in terms of spin waves or spatially extended fractional excitations.
	Figure 2 Summary of the polarized neutron scattering data.
	Figure 3 Schematic representation of local spin flip and spatially separated quasiparticle-pair excitations in the Gutzwiller-projected approach.
	Figure 4 Variational excitation spectra of the Gutzwiller-projected trial wavefunctions.
	Figure 5 Finite-size effects and real-space structure in the |SF"526930B  state.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests

