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Unified one-band Hubbard model for magnetic and electronic spectra of the parent
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Using low-energy projection of the one-band t-t ′-t ′′ Hubbard model we derive an effective spin Hamiltonian
and its spin-wave expansion to order 1/S. We fit the spin-wave dispersion of several parent compounds to the
high-temperature superconducting cuprates La2CuO4, Sr2CuO2Cl2, and Bi2Sr2YCu2O8. Our accurate quantitative
determination of the one-band Hubbard model parameters allows prediction and comparison to experimental
results. Among those we discuss the two-magnon Raman peak line shape, the K-edge resonant inelastic
x-ray scattering 500-meV peak, and the high-energy kink in the angle-resolved photoemission spectroscopy
quasiparticle dispersion, also known as the waterfall feature.
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High-Tc superconductors challenge all known theoretical
approaches by mixing charge and magnetic degrees of freedom
and by lacking a small variational parameter. The one-band
Hubbard model (1bHub), proposed to describe their CuO2

planes,1 includes both of these difficulties in its parameters, the
electron filling, the hopping matrix element t , and the Coulomb
repulsion U . The ratio t/U is moderately small in the cuprates,
thus most approaches project out double occupancies (DOs)
to obtain the Heisenberg model at half filling or the t-J model
for hole or electron doping. Such a projection cannot to be
carried out exactly but may be performed as an expansion in
powers of t/U .2

Experimentally, different techniques have probed separate
channels—magnetic or electronic. Inelastic neutron scattering
(INS) on La2CuO4 (Ref. 3) demonstrated that the projection
must be carried out at least to the fourth order (t4/U 3) to
reproduce the observed magnetic excitation spectrum. Angle-
resolved photoemission spectroscopy (ARPES) indicates that
first-, second-, and third-nearest-neighbor hopping matrix
elements are needed to reproduce the Fermi surface and
quasiparticle dispersion.4 A quantitative description of the
undoped high-Tc parent compounds therefore needs a model
incorporating both of those considerations.5

In this Rapid Communication, we develop such a quantita-
tive theory and present the resulting sets of 1bHub parameters
for single and bilayer undoped cuprates Sr2CuO2Cl2 (SCOC),6

La2CuO4 (LCO),7 and Bi2Sr2YCu2O8 (BSYCO) (this work),
obtained by fitting their magnetic excitation spectra measured
by resonant inelastic x-ray scattering (RIXS) and INS.

We start from the 1bHub Hamiltonian

Ĥ = −
∑
i,τ,σ

tτ c
†
i,σ ci+τ,σ + U

∑
i

ni,↑ni,↓, (1)

where c
†
i,σ and ci,σ creates or destroys a fermion with spin σ on

site i, tij is the hopping matrix element between sites i and j ,
U is the effective on-site repulsion, and ni,σ = c

†
i,σ ci,σ . At half

filling, the kinetic term mixes states with a different number of
DOs, which in the limit t/U � 1 separate into different energy
scales. We use a unitary transformation Heff = eiSHe−iS up to

order t4/U 3 to decouple these states. Following MacDonald
et al.,2 we expand Eq. (1) in terms of the operators T τ

1 , T τ
−1,

and T τ
0 , respectively creating, destroying, and moving a DO

and/or a hole. To fourth order,
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The effective spin Hamiltonian is then calculated from the
matrix elements 〈α|Ĥ(m)|β〉, where |α〉 and |β〉 are singly occu-
pied spin states. In the subspace with no DO, the T
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τ2
0 T

τ3
0 T

τ4
1

matrix elements can only be finite if τ1, τ2, τ3, and τ4 form a
closed loop as the DO and the hole must meet to annihilate
(Fig. 1, top). Apart from four-hop loops, T

τ1
−1T

τ2
1 T

τ3
−1T

τ4
1 and

T
τ1
−1T

τ2
−1T
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1 T

τ4
1 may also contribute on disjoint bonds τ and τ ′,

but in this case the two operator contributions get canceled out
since [T τ

m,T τ ′
m′ ] = 0. Therefore the effective Hamiltonian can

be written as a sum over loop ensembles:8

Ĥ(4) =
∑
{ }

(
4t2

12

U
− 16t4

12

U 3

)
S1S2 +

∑
{ }

4t2
12t

2
23

U 3
S1S3

−
∑
{ }

4t12t23t34t41

U 3

⎧⎪⎪⎨
⎪⎪⎩

4∑
i,j = 1
i �= j

SiSj − 20[(S1S2) (S3S4)

+ (S1S4) (S2S3) − (S1S3) (S2S4)]

⎫⎪⎪⎬
⎪⎪⎭

+ E(4), (3)

where E(4) is a constant and { } ,
{ }

, and
{ }

stand for the ensembles of two, three, and four sites connected
as sketched. We emphasize that the plaquette ensembles are
fully defined by the considered hopping matrix elements
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FIG. 1. (Color online) Top: Example of an exchange process.

contributing to the matrix element 〈 ↑ ↓
↓ ↑

|T−1T0T0T1| ↓ ↑
↑ ↓

〉. Plain (open)

points are DOs (holes). Bottom: CuO2 planes from the perovskite
structure. Examples of exchange loops from the effective spin
Hamiltonian of Eq. (3) are indicated with first-, second-, and third-
nearest-neighbor hoppings t , t ′, and t ′′.

tτ and the lattice topology, so that Eq. (3) is the general
low-energy projection to order t4/U 3 of the 1bHub at half
filling for any lattice. Examples of plaquettes of two, three, and
four sites involving first-, second-, and third-nearest-neighbor
(NN) hopping amplitudes t , t ′, and t ′′ are sketched on the
bottom of Fig. 1. The four-spin exchange term has been
derived in the past for NN hopping alone2,9 and is important
for the magnetism of a large variety of systems.10–15 Here
we generalize this result for an arbitrary set of hopping
amplitudes. A similar development but away from half filling
would result in a t-J model with the same magnetic couplings
as in Eq. (3) plus a family of charge plaquette hoppings.

The derivation of measurable quantities is easier for the in-
sulating parent compounds. Here, we use spin-wave (SW) the-
ory to derive the dispersion of magnetic excitations. We expand
the spin operators of Eq. (3) in terms of Holstein-Primakov
bosons around the classical antiferromagnetic ground state
(GS). Keeping the first 1/S correction for the t2

τ /U terms, the
Hamiltonian transforms as Ĥ(4) = EN + Ĥ2 + Ĥ4 + O(1/S),
where the Néel GS energy EN includes the constant of
Eq. (3), and the harmonic dispersion ω0(k) is obtained from
a Bogoliubov transform of the quadratic term Ĥ2. A Hartree-
Fock decoupling16 of the quartic term Ĥ4 results in an overall
momentum-dependent correction to the magnon energy, so
that our final SW Hamiltonian reads

Ĥ(4) =
∑

k

Zc(k)ω0(k)α†
kαk + EN + δE, (4)

where α’s are free magnon operators, Zc(k) is the 1/S

renormalization of their dispersion, and δE is the quantum
correction to the GS energy at this order. Compared to the
bare NN Heisenberg model (1JHeis), the inclusion of the ring
exchange terms qualitatively alter the SW mode, resulting in
a magnetic zone boundary (ZB) dispersion and a greater SW
velocity. For the bilayer square lattice, Eq. (3) is still valid but
the plaquette ensembles now include interlayer hopping t⊥,

FIG. 2. (Color online) (a) Fits of the measured SW dispersions
(solid lines) and the 1JHei SW dispersion (dotted lines) with JNN =
ω(π/2,π/2)/2Zc. From top to bottom: BSYCO (JNN = 0.15 eV), SCOC
(Ref. 6) (JNN = 0.12 eV), and LCO (Ref. 7) (JNN = 0.14 eV). (b)–
(d) Same as in (a) but subtracted from the 1JHei SW dispersion
to enhance details. Dashed lines are the SW dispersions obtained
from the Hubbard model with only NN hopping t . Data points from
experiments are folded onto the equivalent high-symmetry axes of
the first Brillouin zone.

and two boson flavors to account for the top and bottom sites.
This results in two magnon modes gapped respectively at (0,0)
and (π,π ) but degenerate along the ZB.

Before applying the result to the cuprate compounds
SCOC (Ref. 6) and LCO,7 we report here measurements
of the SW dispersion in Bi2Sr2YCu2O8, a bilayer parent
compound. Single crystals were grown by the flux method,
with yttrium ensuring an insulating antiferromagnetic phase.
The SW dispersion was measured using Cu L3 edge RIXS at
the Super Advanced X-ray Spectrometer (SAXES) end station
of the Swiss Light Source Advanced Resonant Spectroscopies
(ADRESS) beamline, with experimental details and data
analysis as described previously.6

The SW dispersion of each compound is shown in Fig. 2.
They all feature a dispersion between the ZB points (π,0) and
(π/2,π/2) which can in principle be explained by the effective
model of Eq. (3) with NN hopping alone [Figs. 2(b)–2(d),
dashed lines]. However, this approach results in unphysically
low U = 2.2 eV (Ref. 3) for LCO and U < 2 eV for SCOC and
BSYCO. Although U is an effective on-site repulsion, closer
to the charge-transfer (CT) gap than to the bare Coulomb
repulsion, a good 1bHub must use an effective parameter
compatible with electronic and optical spectroscopies, which
request U ∼ 3–4 eV for the cuprates.17 We therefore include
second- and third-NN hopping in our fit, which now has four
parameters (U,t,t ′,t ′′). The measured SW dispersions contain
three distinct constraints, the (π,0) and (π/2,π/2) ZB energies
and the SW velocity. We thus expect a one-dimensional
solution and choose the free parameter to be U . The fitting
procedure is as follows. For a fixed choice of (U,t ′′/t) we fit
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FIG. 3. (Color online) Summary of the fitting results. (a)–(c) Goodness (χ2) of the (t/U,t ′/t) fit for fixed (U,t ′′/t). Solid (blue) and
dashed (green) lines are best-fit solutions as functions of U for t ′t ′′ < 0 and t ′t ′′ > 0, respectively. (d)–(f) χ 2 along the best-fit lines defined in
(a)–(c). (g)–(i) (t/U,t ′/t,t ′′/t) solutions along the best-fit lines defined in (a)–(c). (j)–(l) Staggered magnetization, DO density, and k-averaged
quantum 1/S renormalization Zc along the t ′t ′′ < 0 best-fit lines defined in (a)–(d). Lines: Solid blue BSYCO, dashed red SCOC, and dotted
black LCO. Shaded areas indicate k variation of Zc.

the two other parameters t/U and t ′/t . As the calculation of
the 1/S estimate of Zc involves a slowly convergent integration
over k space, we include it in a two-step iterative approach.
First, we fix it to the uniform Z0 = 1.1579 obtained for
the 1JHei. Then we fit Z0ωk(U,t,t ′,t ′′) and calculate a first
nonuniform Z1(k) from the obtained parameter set. We iterate
this procedure until Zn(k) converges, typically after 10–15
steps. In the case of BSYCO, we further include an interplane
hopping t⊥. However, the resolution of RIXS does not allow
to distinguish the splitting of the two magnon modes, thus we
fix t⊥ = 54 meV as reported by Chuang et al.18

The fitting results over the (U,t ′′/t) plane are shown in
Fig. 3 with the (t/U,t ′/t,t ′′/t) parameters along the best-fit
lines. Overall, the three compounds share common features,
i.e., a strong lower boundary for U , an increase of |t ′|/t and
t ′′/t with U , and a slowly varying t/U . Due to the t2t ′t ′′/U 3

term, the calculated magnon dispersion is symmetric in the
signs of t and t ′ but not in the relative sign of t ′ and t ′′,
resulting in two separate solutions for t ′t ′′ < 0 and t ′t ′′ > 0.
From the best-fit lines, one can see that the inclusion of |t ′′|
is necessary in order to get U ≈ 3–4 eV. For some regions
of the (U,t ′′/t) space, the Néel state is not the classical
GS of Eq. (3), and/or is destroyed by quantum fluctuations.
Both cases can be systematically determined by looking
at the size of zero-point fluctuations 〈a†

i ai〉. The outermost
void regions in Figs. 3(a)–3(c) are those where Néel order
is unstable. In Fig. 3(j), we show the effective staggered
magnetization M̃alt = eiSMalte

−iS � (1 − 8 t2

U 2 )Malt (Ref. 5) as
a function of U along the best-fit lines. By increasing U , t ′
and t ′′ grow while t/U stays roughly constant, bringing more
frustration and subsequently reducing the ordered moment.
We calculate the DO density using the Feynman-Hellmann
theorem 〈ni,↑ni,↓〉 = ∂〈Ĥ(4)〉/∂U . Along the best-fit lines,
a U -independent value of 5% is found for all cuprates, in
agreement with the electronic shielding factor calculated in
Ref. 19. The 1/S estimate of Zc(k) is found to vary by only
about 2% across the Brillouin zone. It thus mainly affects
the overall energy scale dominated by t2

U
. For a given U , it

decreases the value of t , keeping t ′/t and t ′′/t unchanged.
Further magnon-magnon interactions have been shown to

bring small corrections to Zc(k) (Ref. 20) in the case of 1JHeis.
We expect this still is the case in our model. In Fig. 3(l) we show
the average value, which varies from 1.2 to 1.3 for U ≈ 3–4 eV,
which again reveals the prominent role of quantum fluctuations
in the range of parameters relevant for the cuprates.

The effective U cannot be directly obtained through
magnetic excitations. However, more direct experimental
techniques may give good estimates of U , thus determining
a unique set of 1bHub parameters for each of the above
compounds. In particular, an estimate of the 1bHub parameters
of SCOC was obtained from ARPES (Ref. 17) as U = 3.5 eV,
t = 0.35 eV, t ′ = −0.12 eV, and t ′′ = 0.08 eV. Consistently
with those parameters and in order to compare the three cuprate
compounds, in Table I we adopt a uniform value of U = 3.5 eV
and the t ′t ′′ < 0 solution. A more accurate determination of
U could be found in the CT excitation part of the RIXS
spectrum. Using the above ARPES parameter estimates, Hasan
et al. could identify a dispersing excitation around 3 eV in Cu
K-edge RIXS as CT excitation.21 A similar approach using our
parameter sets would allow unambiguous determination of U .

Having established a quantitative model allows to predict
further quantities. We compute the noninteracting two-magnon
(2M) density of states (DOS) underlying, at (0,0), Raman
scattering and, at (π,0), K-edge RIXS, and the 2M dynamical
structure factor Szz(k,ω) probed by INS. For Szz(k,ω) we omit
the t2/U 2 corrections coming from the unitary transformation.
Although a higher-order magnon interaction affects those 2M
quantities,22–24 our results already allow several observations.
Compared to 1JHei, our predictions show the enhancement of
a 500-meV peak in Szz at (π,0) [Fig. 4(d)], which shows that
attempts to explain the reported INS line shape at (π,0) from

TABLE I. Parameters determined from the SW fits with fixed
U = 3.5 eV and t ′t ′′ < 0.

t (meV) t ′ (meV) t ′′ (meV) 〈S〉/S c (meVÅ) 〈ni,↑ni,↓〉
BSYCO 470(10) −205(3) 79(4) 0.3 0.146 5.9%
SCOC 480(10) −200(5) 75(5) 0.29 0.163 5.1%
LCO 492(7) −207(3) 45(2) 0.4 0.195 5.2%
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FIG. 4. (Color online) (a), (b) Szz(k,ω) for 1JHei with JNN =
ω(π,0)/2Zc and the 1bHub with the SCOC parameters. (c), (d) Szz

energy line shapes at the ZB points for 1JHei (dashed red line)
and 1bHub (solid blue line). (e), (f) Corresponding 2M DOS. (g),
(h) DOS profiles at (0,0) and (π,0). (i), (j) Single-magnon wave
vectors contributing to the DOS peaks at (0,0) and (π,0) in 1JHei and
(k), (l) in the SCOC 1bHub.

quantum effects must consider the full Hamiltonian presented
here.7,25,26 Also, along the ZB, the intensity of the one-magnon
(transverse) excitations is constant, so that the missing SW
amplitude observed by INS (Refs. 7,25,27, and 28) does not
result from further neighbor hopping.

In the 1JHei, the (0,0) 2M DOS peaks at 4ZcJNN, corre-
sponding to creating two spin waves at the ZB. The peak in
Raman B1g spectra is found at 0.37 eV for SCOC (Ref. 29)
corresponding to ∼2.8JNN. The reduced energy was explained
as due to magnon-magnon interactions,23 but the peak width
could not be reproduced. The large ZB dispersion that our
model entails first implies that experiments should not be
compared to a single JNN. Second, it explains the Raman peak

width as a range of energies from 2ω(π,0) extending down to
2ω( π

2 , π
2 ), where a maximum occurs because at this energy entire

lines in one-magnon momentum space contribute [Fig. 4(k)].
Third, it predicts a lower peak energy requiring weaker magnon
interactions to match experiments. For a correct calculation of
magnon interactions, we caution that, in the cuprates, it is a
different one-magnon interaction that contributes to the Raman
peak [Fig. 4(k)] than in the 1JHei [Fig. 4(i)]. The observation
of a strong excitation at (π,0) in K-edge RIXS (Ref. 30)
is also explained by our calculations, which demonstrate a
concentration of DOS at exactly this wave vector. Again the
one-magnon states that contribute to this peak [Fig. 4(l)] are
very different from the 1JHei [Fig. 4(j)]. Thus, our results
reveal dramatic differences in the 2M continuum, implying that
INS, L3, or K-edge RIXS and Raman data must be interpreted
using the full quantitative model derived here.

Our model also provides insight into the electronic spectra,
such as the quasiparticle dispersion measured by ARPES. It
has been debated whether a universal kink for undoped and
doped cuprates discovered around 0.4 eV (Refs. 31 and 32)
(the waterfall feature) should be interpreted as (i) a shallow
dispersion with t = 0.23 eV,33 followed by a strong ARPES
matrix element effect34 above 0.4 eV, or as (ii) a self-energy
kink on a stronger dispersing bare band (t = 0.48 eV).35

Our results for LCO (t = 0.49 eV) thus provide strong
support for the second scenario, hence evidence of a strong
quasiparticle interaction, which in turn could be important for
the mechanism of high-Tc superconductivity.

In summary, we derived an effective spin Hamiltonian that
is valid for any lattice and any hopping matrix element range.
Using SW theory with 1/S corrections and three hoppings t ,
t ′, and t ′′, we obtain accurate 1bHub parameter sets for several
parent compounds of the cuprate superconductors. We predict
an ordered moment, DO density, SW renormalization, and
2M spectra. From the noninteracting 2M Szz(q,ω) and DOS,
we clearly demonstrate the necessity to include the extended
exchange paths to interpret Raman and K-edge RIXS peaks.
Furthermore, electronic spectra such as ARPES could also be
addressed using the same 1bHub parameters.

We gratefully acknowledge N. S. Headings et al. for sharing
their data, J. Chang, F. Vernay, F. Mila, T. A. Tóth, B. Normand,
and M. E. Zhitomirsky for fruitful discussions, and the Swiss
NSF and the MaNEP NCCR for support.vv
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Dürr, W. Eberhardt, V. Hinkov, B. Keimer, and H. Berger, Phys.
Rev. Lett. 99, 237002 (2007).

35J. Chang, M. Shi, S. Pailhés, M. Månsson, T. Claesson, O. Tjernberg,
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