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Dynamical structure factor of the triangular-lattice antiferromagnet

M. Mourigal,1,* W. T. Fuhrman,1 A. L. Chernyshev,2 and M. E. Zhitomirsky3

1Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

3Service de Physique Statistique, Magnétisme et Supraconductivité, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs,
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We elucidate the role of magnon interaction and spontaneous decays in the spin dynamics of the triangular-
lattice Heisenberg antiferromagnet by calculating its dynamical structure factor within the spin-wave theory.
Explicit theoretical results for neutron-scattering intensity are provided for spins S = 1/2 and S = 3/2. The
dynamical structure factor exhibits unconventional features such as quasiparticle peaks broadened by decays,
non-Lorentzian lineshapes, and significant spectral weight redistribution to the two-magnon continuum. This rich
excitation spectrum illustrates the complexity of the triangular-lattice antiferromagnet and provides distinctive
qualitative and quantitative fingerprints for experimental observation of decay-induced magnon dynamics.
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I. INTRODUCTION

The Heisenberg triangular-lattice antiferromagnet (HTAF)
is a prominent model in low-dimensional and frustrated
magnetism and is the subject of significant experimental and
theoretical interest. In zero field, the ground state of the model
is the well-known coplanar 120◦ magnetic structure for all
values of spin S, including S = 1/2, as evidenced by various
analytical1–4 and numerical5–7 works. This noncollinear mag-
netic order has profound consequences for the spin dynamics
of the HTAF: its elementary excitations (magnons) become
unstable with respect to spontaneous decay into pairs of other
magnons.8 To describe the excitation spectrum within the
spin-wave theory (SWT) the inclusion of magnon interaction
is crucial.9–11

Currently, a large number of materials are proposed to be
fair realizations of the HTAF, although they often deviate from
the ideal model due to distorted geometry of exchange bonds
or additional spin-anisotropy terms. These include the spin-
1/2 materials Cs2CuCl4,12 Cs2CuBr4,13 and Ba3CoSb2O9

14,15

and a number of compounds with larger spin values such
as VCl2,16 LuMnO3,17 Rb4Mn(MoO4)3,18 CuCrO2,19 α-
SrCr2O4,20 and α-CaCr2O4.21,22 The most comprehensive
experimental characterization of these materials is done by in-
elastic neutron scattering on single crystals,19,22 which directly
measures the energy and momentum dependence of spin-spin
correlations as described by the dynamical structure factor
S(q,ω).

The spin-wave calculation of S(q,ω) in the HTAF is compli-
cated by the noncollinear spin arrangement and strong magnon
interaction. Previously, the dynamical structure factor for a
quasi-one-dimensional spiral antiferromagnet was calculated
by Ohyama and Shiba.23 Their method was subsequently
adapted to describe neutron-scattering experiments on the
orthorhombically distorted triangular-lattice antiferromagnet
Cs2CuCl4.24,25 The deficiency of that method is that it operates
directly with bare Holstein-Primakoff bosons rather than
with Bogolyubov quasiparticles, making the systematic 1/S

ranking of different terms difficult and providing results that
are unnecessarily complicated compared to collinear antifer-
romagnets. In addition, Ref. 23 does not draw a distinction

between retarded and causal spin Green’s functions, which is
important for recovering the correct ω → 0 behavior.

One of the goals of the present work is to revisit calculation
of the dynamical structure factor for a noncollinear antifer-
romagnet, focusing on the 1/S ranking and on the correct
ω dependence of various contributions to spin correlation
functions. Our second goal is to provide the first explicit theo-
retical results for S(q,ω) of the HTAF for representative values
of spin to guide experimental inelastic neutron-scattering
measurements in realistic materials. Such a reference point
should allow evaluation of the accuracy and limits of the SWT
in various experimental situations and help to identify when
the latter breaks down in favor of alternative descriptions, for
instance, using spinons.26–28

The 1/S formalism for interacting spin waves in the HTAF
was previously described in detail in Ref. 11. That work
focused on the role of decays in the magnon spectrum and
on a classification of singularities appearing in the latter. The
present work is concerned with the explicit calculation of the
dynamical structure factor for the HTAF within the framework
of nonlinear SWT.

Section II contains details of the theoretical formalism
where we use basic notations from Ref. 11. Then, in Sec. III,
we use the developed formalism and present high-resolution
predictions for the dynamical structure factor for S = 1/2 and
S = 3/2 along the high-symmetry directions of the Brillouin
zone. Our results show a complex excitation spectrum and
provide evidence of the crucial effects of magnon-magnon
interactions on the spin dynamics, demonstrated by broadened
quasiparticle lineshapes, double-peak structures, and contri-
butions from the two-particle continuum that dominate a large
fraction of the spectrum. We also present the momentum-
integrated structure factor and representative constant-ω scans
of S(q,ω) and discuss their features. We conclude in Sec. IV
and provide various details in the Appendix.

II. DYNAMICAL CORRELATIONS

Neutron scattering experiments provide a direct probe of
the spin-spin correlation function, otherwise known as the
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FIG. 1. (Color online) (a) Coplanar 120◦ spin structure of the
Heisenberg triangular-lattice antiferromagnet. (b) Brillouin zone of
the triangular lattice with high-symmetry points and paths. Shaded
area is the magnon decay region.

dynamical structure factor:

Sα0β0 (q,ω) =
∫ ∞

−∞

dt

2π
eiωt

〈
Sα0

q (t)Sβ0
−q(0)

〉
, (1)

where α0 and β0 refer to spin components in the laboratory
frame {x0,y0,z0}. The inelastic neutron-scattering cross section
is proportional to a linear combination of the diagonal
components of the correlation function, (1), with momentum-
dependent prefactors.29 In the following, we do not assume
a particular experimental geometry and consider instead the
“total” structure factor in which all three components are
contributing equally:

S tot(q,ω) = Sx0x0 (q,ω) + Sy0y0 (q,ω) + Sz0z0 (q,ω). (2)

While the dynamical structure factor is measured in the
laboratory reference frame, the spin-wave calculations are
performed in the rotating frame with z oriented along the
local magnetization on each site. Using the propagation vector
Q = (4π/3,0) of the 120◦ spin structure [Fig. 1(a)] and
choosing spins to rotate in the x0-z0 plane, the relation between
spin components in the two frames is S

y0
i = S

y

i and

S
x0
i = Sz

i sin(Q · ri) + Sx
i cos(Q · ri),

(3)
S

z0
i = Sz

i cos(Q · ri) − Sx
i sin(Q · ri).

Then components of the dynamical structure factor in the two
coordinate systems are connected by

Sx0x0 (q,ω) = 1

4

(
Sxx

q−,ω + Sxx
q+,ω + Szz

q−,ω + Szz
q+,ω

)

+ i

4

(
Sxz

q−,ω − Szx
q−,ω − Sxz

q+,ω + Szx
q+,ω

)
, (4)

Sz0z0 (q,ω) = Sx0x0 (q,ω) , Sy0y0 (q,ω) = Syy(q,ω),

with shorthand notations Sαβ

k,ω ≡ Sαβ(k,ω) and q± = q ± Q.
In Eq. (4) one can readily identify conventional diagonal
contributions of the transverse (xx and yy) and longitudinal
(zz) spin fluctuations.30

In addition, the noncollinear nature of the ground state is
responsible for terms with mixed transverse and longitudinal
(xz and zx) fluctuations. The frequency dependence and the
magnitude of the these off-diagonal correlation functions are
discussed in the Appendix. We find that these off-diagonal
components primarily contribute to the singularities within
the two-magnon continuum that are already present in the
diagonal terms, while the dominant features of the structure

factor, arising from the diagonal terms, remain intact. We,
thus, conclude that the off-diagonal terms always yield a
subleading contribution with respect to the diagonal parts. A
similar conclusion was reached in the previous work on the
distorted HTAF.25 This allows us to neglect such terms in the
following consideration.

Using (4), we rewrite the total structure factor in terms of
the diagonal and mixed parts and further separate the former
term into transverse and longitudinal contributions:

S tot(q,ω) = Sdiag(q,ω) + Smix(q,ω),

Sdiag(q,ω) = S⊥(q,ω) + SL(q,ω),

S⊥(q,ω) = Syy
q,ω + 1

2

(
Sxx

q+,ω + Sxx
q−,ω

)
, (5)

SL(q,ω) = 1
2

(
Szz

q+,ω + Szz
q−,ω

)
,

Smix(q,ω) = i
2

(
Sxz

q−,ω − Szx
q−,ω − Sxz

q+,ω + Szx
q+,ω

)
.

As discussed, we ignore the mixed (off-diagonal) term for
the bulk of this work and use explicitly S tot(q,ω) ≈ Sdiag(q,ω)
in Secs. II and III. However, in the Appendix we consider
the exact definition of S tot(q,ω) from Eq. (5) to illustrate the
contribution of the mixed term to the total dynamical structure
factor and justify our decision to neglect it.

The dynamical spin correlator Sαα(q,ω) is related to the
retarded Green’s function of spin operators via the fluctuation-
dissipation theorem [see, e.g., Ref. 31],

Sαα(q,ω) = − 1

π
[1 + nB(ω)] Im

[
Gαα

ret (q,ω)
]
, (6)

where nB(ω) = 1/(eω/kBT − 1) is the Bose distribution func-
tion. Here we are interested in T = 0 case, for which nB(ω) ≡
0 for ω > 0 and nB(ω) ≡ −1 for ω < 0. Hence, S(q,ω) is
nonzero only for positive frequencies and

Sαα(q,ω) = − 1

π
Im

[
Gαα

ret (q,ω)
]
. (7)

At T = 0, one can use the causal Green’s function, Gαβ(q,t) =
−i〈T Sα

q (t)Sβ
−q〉, on the right-hand side of Eq. (7) since the

two Green’s functions coincide for ω > 0. This simplifies
calculations, although caution is still needed when dealing
with bosonic Green’s functions at negative frequencies (see
Sec. II A). In the next two subsections we consider transverse
and longitudinal components of the structure factor.

A. Transverse fluctuations

The spin-wave calculation of the dynamical correlation
functions proceeds with the Holstein-Primakoff representation
of spin operators Sα

i in terms of bosons ai and subsequent
expansion of square roots in boson density a

†
i ai ; see Ref. 11

for details on application of the SWT to the HTAF. In order to
determine the leading contributions of order O(1) and O(1/S)
to the transverse structure factor in (5), one may use the
following expressions:

Sx
i =

√
S

2
(ai + a

†
i )�+, S

y

i = −i

√
S

2
(ai − a

†
i )�−, (8)

where

�± = 1 − 2n ± δ

4S
(9)
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are the Hartree-Fock factors obtained from the contraction of
boson operators in cubic terms with the expectation values
n = 〈a†

i ai〉 and δ = 〈aiai〉. Terms beyond the Hartree-Fock
approximation contribute to the transverse structure factor in
the O(1/S2) order and can be neglected.

Substituting (8) into the spin Green’s functions and per-
forming the Bogolyubov transformation,11 we obtain

Gxx(q,ω) = S

2
�2

+(uq + vq)2[G11(q,ω)+ G11(−q, − ω)

+ 2G12(q,ω)],

Gyy(q,ω) = S

2
�2

−(uq − vq)2[G11(q,ω) + G11(−q, − ω)

− 2G12(q,ω)]. (10)

Here G11(q,ω) and G12(q,ω) are the normal and anomalous
magnon Green’s functions and uq and vq are the Bogolyubov
coefficients.

In the harmonic approximation, G12(q,ω) ≡ 0 and
G11(q,ω) ≡ G0(q,ω) = (ω − εq + i0)−1, where εq is the
magnon energy in the harmonic approximation,

εq = 3JS
√

(1 − γq)(1 + 2γq), (11)

with γq = 1
3 [cos qx + 2 cos( qx

2 ) cos(
√

3
2 qy)]. Hence, in this ap-

proximation, magnon excitations manifest themselves as sharp
δ peaks in the dynamical structure factor. However, in spiral
antiferromagnets, magnon-magnon interaction substantially
alters this simplified picture. The complication is mainly due
to three-magnon processes, which are inherent to noncollinear
antiferromagnets,8 and produce the ω-dependent self-energy
already in the lowest-order perturbation theory, also leading
to a finite lifetime of magnons in a large part of the Brillouin
zone.

For the purpose of the 1/S ranking of various contributions
we note that the magnon energy scales with spin as εq = O(S),
and the self-energy as 
11,12(q,ω) = O(1). Then, to achieve
the O(1/S) accuracy in the structure factor, one can use a
reduced form of the Belyaev equations for the magnon Green’s
functions:

G11(q,ω) ≈ 1/[ω − εq − 
11(q,ω)],
(12)

G12(q,ω) ≈ 
12(q,ω)G11(q,ω)G11(−q, − ω).

Clearly, G11(q,ω) = O(1/S) and G12(q,ω) = O(1/S2). In the
lowest order, magnon self-energies are


11(q,ω) = 
HF
11 (q) + 1

2

∑
k

|V31(k; q)|2
ω − εk − εq−k + i0

− 1

2

∑
k

|V32(k,q)|2
ω + εk + εq+k ∓ i0

,

(13)


12(q,ω) = 
HF
12 (q) + 1

2

∑
k

V32(k, − q)V ∗
31(k; q)

ω − εk − εq−k + i0

− 1

2

∑
k

V32(k,q)V ∗
31(k; −q)

ω + εk + εq+k ∓ i0
,

where 
HF(q) are the frequency-independent Hartree-Fock
contributions, V31(k; q) and V32(k,q) are the three-particle
decay and source interaction vertices, respectively, and ∓i0
correspond to the causal/retarded self-energies.11 We note
that one must use the lower sign in (13) to ensure the
correct odd-frequency dependence of the imaginary part of
the magnetic susceptibility. In the following, we use small
δ ≡ 0+ for the numerical evaluation of the self-energies
in (13).

Several important simplifications are in order. The term
containing anomalous Green’s function on the right-hand sides
of Eqs. (10) is next order in 1/S classification compared to the
first two. While it does contribute to the structure factor in the
sought O(1/S) order, its contribution can be shown to be small
already for S = 1/2 and also qualitatively redundant to that of
the other terms (see the Appendix for analysis). We therefore
neglect these terms in the following consideration.

Formally, the first two Green’s functions on the right-hand
side of Eqs. (10) are of the same order in the 1/S ranking
and could contribute equally to Im[Gαα(q,ω)]. However, the
second term, Im[G11(−q, − ω)], is off-resonance compared to
Im[G11(q,ω)] and contains no poles for ω > 0, thus providing
no contribution to the structure factor. While this term is
important to ensure the correct behavior of the spectral
function for low-energy excitations at ω,εq → 0,32 for all
practical purposes it is negligible.

One should note that the consideration of spectral properties
within the SWT always exceeds the nominal 1/S order as
the frequency dependence is automatically “off-shell,” thus
including contributions of higher 1/S order. A technical
issue arises when evaluating magnon spectral function with

11(q,ω) given by Eq. (13). Due to the third term in (13)
(“source”), a spurious excitation branch appears in the vicinity
of Q with vanishing εq at a q = Q. This unphysical mode is
the manifestation of a pole pushed up from negative values
of ω. Similar behavior is also present in Im[G11(−q, − ω)],
which develops an extension of the same mode in the formally
forbidden ω > 0 region. In principle, these anomalies should
be removed by some self-consistent higher-order 1/S expan-
sion, an analytically and computationally difficult problem.
Here we adopt a more expeditious manner to address the
unphysical mode directly by returning the offending source
self-energy term back on-shell, i.e., taking ω = εq within this
term. In this way, the effect of magnon-magnon interactions
and decays are maintained while unphysical singularities are
suppressed.

Altogether, for the results in the next section we use
the following expressions for the Syy(q,ω) and Sxx(q,ω)
components of the transverse structure factor in (5):

Sxx(q,ω) = S

2
�2

+(uq + vq)2A11(q,ω),
(14)

Syy(q,ω) = S

2
�2

−(uq − vq)2A11(q,ω),

with A11(q,ω) = −(1/π )Im[G11(q,ω)], where G11(q,ω) is
determined by Eq. (12) with 
11(q,ω) given by Eq. (13), in
which the source term is taken on-shell, ω = εq. We note that in
the harmonic approximation Sxx[Syy](q,ω) ∼ SA11(q,ω) ∼
Sδ(ω − εq), which is explicitly of order O(1).
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B. Longitudinal fluctuations

Spin fluctuations in the direction of ordered moments
written in terms of Holstein-Primakoff bosons are

δSz
q = − 1√

N

∑
k

a
†
kak+q. (15)

Then, the inelastic part of the longitudinal neutron cross
section SL(q,ω) in (5) is determined by the correlation func-
tion Szz(q,t) = 〈δSz

q(t)δSz
−q〉, which probes the two-magnon

continuum.
As is clear from the derivation given in the Appendix,

the longitudinal component of the structure factor is of
order O(1/S), a factor of 1/S smaller than the leading
terms in the transverse correlation functions, (14). Therefore,
in the spirit of the 1/S expansion it may be calculated
with bare magnon Green’s functions, neglecting corrections
from magnon-magnon interactions. Since this approximation
neglects renormalization of the magnon energies, the obtained
width of the two-magnon continuum will not be precise but
will still give a fair embodiment of the continuum contribution
to the neutron-scattering cross section.

With this we obtain

Szz(q,ω) = 1

2

∑
k

(ukvk−q+ vkuk−q)2δ(ω − εk − εk−q);

(16)

see the Appendix for details.
Thus, in the following calculations of SL(q,ω) in (5) we

use Szz(q,ω) from Eq. (16).

III. RESULTS AND DISCUSSION

In this section we present high-resolution numerical results
using Eqs. (5), (14), and (16) and S tot(q,ω) ≈ Sdiag(q,ω) to
provide specific predictions for the dynamical structure factor
of the HTAF for S = 1/2 and S = 3/2, revealing the dramatic
effects of magnon-magnon interactions. We begin with the
analysis of transverse fluctuations related to the normal part
of the spectral function and proceed to the comparison of
the relative weights of transverse and longitudinal fluctuations
in the dynamical structure factor for representative momenta.
Finally, we show our results for the total dynamical structure
factors of the HTAF for S = 1/2 and S = 3/2 and conclude
with a description of their momentum-integrated forms.

We performed the numerical integration of the self-energies
in Eq. (13) using an artificial broadening of δ = 0.03JS and
various integration schemes. The intensity plots of the spectral
function (Fig. 2) and dynamical structure factor (Fig. 4) used
a quasi–Monte Carlo integration in MATHEMATICA with an
accuracy goal of four digits. The line plots in Figs. 3 and
9 used a Gaussian-quadrature method with 4 × 106 points,
while a simple Monte Carlo integration with 5 × 106 points
was used for Fig. 8. The momentum-integrated S tot(ω) and
constant-energy q scans of S tot(q,ω) in Figs. 5–7 used a
Gaussian-quadrature method with 1.6 × 105 k and q points
and a somewhat larger δ = 0.04JS. A higher density mesh of
1.44 × 106 points was used in Fig. 5 for the long-wavelength
region ω/SJ < 0.5, with subsequent extrapolation to ω → 0
limit.

A. Transverse fluctuations and spectral function

We begin with an examination of the transverse dynamical
structure factor S⊥(q,ω) in (5). The dominant contribution
to this component originates from the normal part of the
magnon Green’s function G11(q,ω), with momenta q and
q ± Q. Neglecting the anomalous terms, S⊥(q,ω) is related
to the spectral function A11(q,ω) = −1/π Im[G11(q,ω)] with
momentum-dependent prefactors [see Eq. (14)]. Therefore,
in Fig. 2 we restrict ourselves to A11(q,ω) for S =1/2 and
S =3/2 along the high-symmetry directions in the Brillouin
zone from Fig. 1(b). This presentation gives the benefit of
relative simplicity and highlights important features of the
spectrum related to magnon interactions and decays, which
are subsequently identified in the more complicated landscape
of the structure factor. The transverse dynamical structure
factor is then obtained by a linear combination of A11(q,ω)
and A11(q ± Q,ω) according to (5) and (14).

The effect of magnon interaction is taken into account by
the self-energies, (13), which originate from a direct coupling
of the single-particle branch to the two-magnon continuum.
Because of such a coupling, an incoherent component is
present in the intensity plots of A11(q,ω) in Fig. 2, which also
provides an insight into the quasiparticle-like behavior of the
single-particle excitations, potentially broadened by decays.8

A feature of the HTAF spectrum, observed for all momenta,
is the downward renormalization of the magnon dispersion
from its bare value εq (dashed line) for both S =1/2 and S =
3/2 (see Fig. 2). This is in agreement with a number of previous
works on the HTAF6,9–11 and on related problems involving
magnon interaction in noncollinear antiferromagnets.8,33,34

This generic effect is due to an effective repulsion between
the single-particle branch and the two-particle continuum fa-
cilitated by their coupling. This renormalization is about 18%
for S =1/2 in Fig. 2(a) and about 8% for S =3/2 in Fig. 2(b),
representing a quantum 1/S effect. The renormalization factor
for S = 1/2 is somewhat less than in the numerical6 and
on-shell SWT results9–11 but is in closer agreement with the
results of the off-shell Dyson equation SWT approach.11 Other
aspects of the spectrum renormalization, such as development
of the “roton-like” minimum at the M point, are also in
agreement with earlier studies.6,9,10 Note that the discussed
effect of magnon interaction in the HTAF is in contrast with
the well-known upward spectrum renormalization for collinear
antiferromagnets.35

An interesting signature of strong magnon interaction in
the S = 1/2 case is the bright-intensity spot at ω/J ≈ 3
in the vicinity of the M point [see Fig. 2(a)]. Upon closer
examination we find that this is an antibonding state: the
single-magnon state pushed out of the two-magnon continuum.
While this state is likely an artifact of our approximation
and will broaden significantly if treated self-consistently, it
signifies the strength of the magnon-magnon interaction. Note
that this effect disappears in the S = 3/2 case, where magnon
interaction is weaker.

Another prominent feature is the broadening of the quasi-
particle peaks observed for the momenta inside the decay
region [shaded (gray) area of the Brillouin zone in Fig. 1(a)],
e.g., along the K� line as well as in the �M and MY directions.
A particularly salient broadening occurs in the S = 1/2 case,
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FIG. 2. (Color online) Intensity plots of the momentum and energy dependence of the spectral function A11(q,ω) for (a) S = 1/2 and (b)
S = 3/2 along the high-symmetry paths in the Brillouin zone in Fig. 1(b). The dashed line is the linear SWT spectrum εq.

as shown in Fig. 2(a). The corresponding magnon excitations
acquire a finite lifetime due to three-particle magnon-magnon
interactions.8 The kinematic conditions required for such
processes are discussed in detail elsewhere,11 though we note
that the boundary of the decay region is due to emission of the
acoustic magnon εQ. This is distinct from the case of magnetic-
field-induced decays in the square-lattice antiferromagnet,
where the corresponding decay products are inside the decay
region and thus also unstable.33,36 As a consequence, the
boundaries of the HTAF decay region are sharply defined,
leading to a spectacular and robust quasiparticle “blowout”
when the single-magnon branch enters the decay region and
merges with the two-magnon continuum, as visible along
the MY path in Fig. 2(a). This effect resembles neutron
scattering observations of the so-called termination point for

the excitations of superfluid 4He37 and the triplet excitations
of spin-gap materials.38,39 Similar distortion of the excitation
curve in the vicinity of a continuum boundary was also
observed in other spin systems.40

One can see in Fig. 2(a) that the crossing between one-
particle spectrum and two-magnon continuum is accompanied
by the “edge” singularity, visible as the lowest-energy branch
for the K� line or as a “double-peak” structure for the �M
path if cutting along the ω axis. Such features are the van
Hove singularities11 due to the bottom of the two-magnon
continuum (see also Figs. 3, 4, and 8). Within the SWT, they
should be regularized by the higher order diagrams11 and, in
realistic systems, by a small interlayer coupling.34

While the role of interaction between magnons decreases
for S = 3/2, magnon decays remain highly visible, in
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FIG. 3. (Color online) (a–c) Energy dependence of the dynamical
structure factor for S = 1/2 at representative points of the Brillouin
zone: M, Y, and Y1 [see Fig. 1(b)]. The solid line corresponds to
the total structure factor S tot(q,ω); the shaded (gray) area is the
longitudinal part SL(q,ω). Vertical marks indicate positions of the
quasiparticle peaks from A11(q,ω) and A11(q ± Q,ω). Horizontal
bars indicate the width σ = 0.03J of the Gaussian convolution.

particular, along the K� line and in the blowout region of
the MY line [see Fig. 2(b)]. The spectral weight transfer
from single-particle excitations to the continuum is, however,
strongly reduced.

Finally, we note that many of the spectral features discussed
here, such as spectrum broadening throughout large regions
of the Brillouin zone, dramatic redistributions of spectral
weight to the two-magnon continuum, non-Lorentzian two-
peak structures, and other features clearly unlike conventional
single-particle peaks, have been discussed by us recently for
the quasi-two-dimensional square-lattice antiferromagnet in a
field.8,34

B. Total dynamical structure factor

We now proceed with the analysis of the total dynamical
structure factor S tot(q,ω) ≈ Sdiag(q,ω) in (5) and of the role of
the longitudinal component SL(q,ω) in it, which we take in the
form given by Eq. (16). In Fig. 3 we offer such a consideration
for S =1/2 and for representative high-symmetry points, M,
Y, and Y1 [see Fig. 1(b)]. Note that Y1 is the image of the M
point shifted by the Q vector.

The contribution of the longitudinal component to the total
dynamical structure factor is shown in Fig. 3 by shaded (gray)
areas, while the total structure factor is plotted by solid lines. In
order to mimic a hypothetical experimental energy resolution
as well as to soften various spurious features such as the
edge singularities in S⊥(q,ω) discussed above or the van
Hove singularities of the two-magnon density of states in
SL(q,ω), the results are convoluted with a Gaussian profile
of σ = 0.03J . This is indicated by horizontal bars in Fig. 3
and done in addition to the artificial broadening δ used in the
numerical integration.

Several aspects of the results presented in Fig. 3 deserve
mention. As we discussed above, at each q point the transverse
component of the structure factor is a linear combina-
tion of three spectral functions—A11(q,ω), A11(q − Q,ω),
and A11(q + Q,ω)—with different q-dependent weights [see
Eqs. (14) and (5)]. For the high-symmetry points of our choice,
only two of these terms are distinct. Given the correspondence
between qM ± Q and the points equivalent to Y1, the similarity
of their structure factors, the positions and shapes of the
peaks, and other features in Figs. 3(a) and 3(c) are now easily
understood. One can also see that the q-dependent weights
yield different relative intensities of different features at the
M and Y1 points. Moreover, using our previous analysis of
the spectral function, one can observe that the lowest peaks
in Figs. 3(a) and 3(c) are resolution limited and both come
from the sharply defined peak in A11(q,ω) at the M point
in Fig. 2, which is outside the decay region. At the same
time, quasiparticle peaks that are broadened by decays and
accompanied by the non-Lorentzian edge-like features below
them, labeled q + Q and q in Figs. 3(a) and 3(c), respectively,
originate from the same spectral shapes in A11(q,ω) at the Y1

point (see Fig. 2).
For the structure factor at the Y point, the transverse part is

dominated by the two well-defined quasiparticle peaks. While
the lowest one, q ± Q, corresponds to stable magnons, the
second peak is from the Y point itself, which is inside the
decay region in Fig. 1(b). A closer inspection of Fig. 2 and
the on-shell analysis in Ref. 11 show that the corresponding
broadening due to decays is small for this point. A similar type
of comprehensive analysis of the structure factor is possible
for any other q point.

A compelling property of the structure factor for S =1/2
in Fig. 3 is the very strong contribution of the longitudinal
component SL(q,ω) for each momenta. This is directly related
to the transfer of part of the static spectral weight (reduction
of the ordered moment) to the longitudinal dynamical correla-
tions under the action of strong quantum fluctuations. Thus, in
addition to the broad, continuum-like features of the transverse
structure factor, the longitudinal component dominates the
wide range of ω in each of the plots in Fig. 3. In fact, it
contributes the major portion to the total spectral weight at the
Y point in Fig. 3(b).

To complete the discussion of Fig. 3, we also note that while
the transverse parts of the structure factors at the M and Y1

points are related, the corresponding longitudinal components
are different. This is because, according to Eq. (5), SL(q,ω)
at a q point takes two contributions, from Szz(q + Q,ω) and
Szz(q − Q,ω). Hence, given the relation between M and Y1,
SL(qM,ω) = Szz(qY1 ,ω), but not vice versa.
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FIG. 4. (Color online) Intensity plots of the momentum and energy dependence of the total dynamic structure factor S tot(q,ω) (5) for (a)
S = 1/2 and (b) S = 3/2 along the high-symmetry paths in the Brillouin zone shown in Fig. 1(b).

In Fig. 4 we present the intensity plots of the q and ω

dependence of the total structure factor for both S = 1/2 and
S = 3/2 along the high-symmetry paths in Fig. 1(b). One of the
benefits of the insight provided by our preceding discussion of
the spectral function in Fig. 2 and ofS(q,ω) at selected q points
in Fig. 3 is that now the complicated view of Fig. 4 is seen
naturally as a superposition of three q-modulated A11(q,ω)
terms and a background of two Szz(q,ω) terms.

As can be anticipated from the richness in the behavior
of the spectral function, the total dynamical structure factor
S tot(q,ω) shows a complex interplay of quasiparticle-like and
continuum contributions, revealing an abundant broadening
of the peaks coexisting with the sharply defined excitations
that are brought in by the shifted ±Q branches. For instance,
the spectacular “blowout” region of the single-magnon branch

entering the two-magnon continuum along the YM direction
near Y1 in Fig. 2(a) now acquires a “mirror” region around
the M point. Note that both of these also coexist with the
well-defined magnon branches at lower energy.

In addition, for S = 1/2, the continuum-like component
dominates the spectrum throughout the Brillouin zone at
higher energies. For the S = 3/2 case in Fig. 4(b), the full
structure factor is composed of three well-defined quasi-
particle branches, which also demonstrate some substan-
tial continuum-like scattering. Altogether, the total struc-
ture factor exhibits a complex landscape consisting of
sharp and broadened quasiparticle peaks as well as sub-
stantial continuum contributions from both the transverse
and the longitudinal parts of the dynamical structure
factor.
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FIG. 5. (Color online) Energy dependence of the momentum-
integrated dynamical structure factor S(ω) for (a) S = 1/2 and
(b) S = 3/2. The solid line corresponds to the total momentum-
integrated structure factor S tot(ω); the shaded (gray) area is the
longitudinal component SL(ω). Vertical arrows indicate the energies
of the constant-energy scans in Figs. 6 and 7.

In order to analyze the contributions of the continuum and
of the quasiparticle-like excitations to the structure factor on a
more quantitative level, we consider the momentum-integrated
dynamical structure factor

S tot(ω) =
∑

q

S tot(q,ω), (17)

which coincides with the spectral density of the spin
autocorrelation function. Such a quantity is readily ac-
cessible in neutron-scattering experiments on powder
samples.22

Figure 5 shows S tot(ω) (solid line) and its longitudinal
component SL(ω) [shaded (gray) area] for S = 1/2 and
S = 3/2. Strong peaks are observed for both values of spin.
They are clearly identifiable as the van Hove singularities
in the spectra of dispersive quasiparticle-like modes. The
lowest peak is associated with the high density of states at
the magnon dispersion minimum at the M point (ω ≈ 2JS),
which also retains a considerable flatness in the MX direction.
The upper peak is the standard van Hove singularity due to
the top of the single-magnon spectrum (ω ≈ 3JS), which also
has only weak dispersion along certain directions and thus
contributes significantly to the density of states. Although
these features appear less pronounced in the momentum-
resolved dynamical structure factor in Fig. 4 for S = 1/2
compared to S = 3/2, strong peaks in the integrated spectrum
in Fig. 5(a) are still present. Their energies can serve to
estimate exchange constants and excitation bandwidth, e.g.,
from powder-averaged neutron scattering experiments. We
also note that no sign of the “flat band” feature, advo-
cated in Ref. 10 for the renormalized on-shell spectrum of
the HTAF in the S = 1/2 case, is observed in S tot(ω) in
Fig. 5(a).

What is most remarkable in the integrated structure factor
in Fig. 5 is that a significant spectral weight extends far
beyond the upper edge of the single-magnon spectrum, the
latter identifiable by the van Hove singularity. This behavior is
not unlike the one recently observed in an S = 3/2 triangular-
lattice antiferromagnet.22 It also highlights, once more, the
necessity of taking magnon-magnon interaction into account
in going beyond the predictions of the linear SWT for the
dynamical structure factor of noncollinear antiferromagnets.
For the S = 1/2 case [Fig. 5(a)] the massive contribution of
the longitudinal SL(ω) to the high-energy spectral weight is
also rather spectacular.

Complementary to both Fig. 4 and Fig. 5, in Figs. 6 and 7 we
present the constant-energy scans of the dynamical structure
factor S tot(q,ω) for three selected energies (indicated by verti-
cal arrows in Fig. 5). Modern neutron-scattering instrumenta-
tion is naturally suited for studies of the dynamical correlations
in large regions of momentum space at fixed energies, which
also motivates such a representation. One of the advantages
of such constant-ω scans is that well-defined spin-wave
excitations and corresponding van Hove singularities appear as
bright sharp lines that are easy to distinguish from continuum
scattering, manifested as a broadly distributed diffuse intensity.
The results for S = 1/2 and S = 3/2 are discussed below.

Figures 6(a) and 7(a) show the spectral weight near the
top of the single-particle spectrum, ω/J = 1.25 and 4.3 for
S = 1/2 and S = 3/2, respectively. In Fig. 6(a), a well-defined
spectrum is observed only in the vicinity of two-thirds of the
�M line, corresponding to excitations outside of the decay
region (see also Fig. 4). This should be compared to Fig. 7(a)
for the S = 3/2 case, exhibiting strong signal from almost flat
branches of well-defined excitations contributing to the strong
van Hove singularity observed in S tot(ω) in Fig. 5(b). The rest
of the Brillouin zone in Fig. 6(a) displays a weaker diffuse con-
tinuum, originating from broadened quasiparticle peaks and a
two-magnon continuum. Previously discussed features, such
as blowout around the Y1 and M points, are also clearly visible.

The energy ω/J = 0.85 in Fig. 6(b) corresponds to the
vicinity of the first peak in S tot(ω) in Fig. 5(a), associated
with the roton-like minima at the M points with an almost-flat
dispersion along the MX line [see Fig. 4(a)], the latter
indicating well-defined magnon excitations via a triangular-
shaped intensity. The circular distribution of spectral weight
around the K points corresponds to magnons clearly broadened
by decays. Fainter, diffuse-like contributions are also seen
around the � point. This should be compared to the S = 3/2
case in Fig. 7(b), where saddle-point features of the magnon
dispersion are much sharper.

Finally, a representative cut in the acoustic regime of the
spectrum is shown in Figs. 6(c) and 7(c). At these energies,
the effect of decays is weaker and concentric distributions of
spectral weight around the K point reveal three distinct acoustic
spin-wave branches from superposition of various q, q + Q
and q − Q contributions. The innermost (circular) distribution
of spectral weight corresponds to q → � excitations, while
the outermost (rounded triangular) contributions are associated
with spin waves from q → K,K′. Compared to S = 3/2, the
spectral intensity in the S = 1/2 case clearly retains some
diffuse component. The vicinity of the � point hosts a similar
pattern, albeit strongly suppressed by the q-dependent factors.
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FIG. 6. (Color online) Intensity plots of the constant-ω scans of
the dynamical structure factor S tot(q,ω) in the q plane for S = 1/2.
(a) ω/J = 1.25, (b) ω/J = 0.85, and (c) ω/J = 0.5. Energies are
indicated in S tot(ω) in Fig. 5(a).

IV. CONCLUSION

We have developed an analytical theory for the dynamical
structure factor of the triangular-lattice Heisenberg antiferro-
magnet and presented explicit numerical results for Sαα(q,ω)
in the case of S = 1/2 and S = 3/2. Our treatment includes
comparison of different contributions to the dynamical struc-
ture factor at 1/S order, ensures the correct form of the Green’s
functions at low energy, and uses a pseudo-on-shell approach
to avoid spurious manifestations of an unphysical pole in
the spectral function. In this way, we have determined the
dominant contributions to the dynamical structure factor to
facilitate a thorough computation of the excitation spectrum in
the entire momentum-energy space. In particular, our analysis

FIG. 7. (Color online) Same as in Fig. 6 for S = 3/2. (a)
ω/J =4.3, (b) 2.8, and (c) 1.5. Energies are indicated in S tot(ω)
in Fig. 5(b).

demonstrates that contributions from anomalous Green’s
functions and mixed transverse-longitudinal terms can be
neglected. The obtained energy dependence of the dynamical
structure factor displays a rich interplay of quasiparticle- and
continuum-like features. Although our analysis is purely two-
dimensional, we anticipate that further softening of unphysical
singularities in the energy dependence can be achieved by
increasing the dimensionality, such that our conclusions should
remain valid for a wide range of realistic materials.

The role of magnon-magnon interactions and the presence
of decays is demonstrated through the energy- and momentum-
resolved spectrum as well as the momentum-integrated
structure factor. A multitude of complex phenomena are
observable in both. This includes non-Lorentzian lineshapes,
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quasiparticle blowout, and roton-like minima, as well as an
overall downward renormalization, a rich density of states,
and contributions from van Hove singularities. Both spectrum
presentations, integrated and momentum resolved, highlight
that quantum fluctuations transfer significant spectral weight to
the two-magnon continuum, visible in both the transverse and
the longitudinal components of the dynamical structure factor,
with the latter contributing strongly to the overall dynamical
response for S = 1/2.

Our results provide the first determination of the full
dynamical structure factor for the isotropic HTAF within
the framework of nonlinear SWT. They are consistent
with and go beyond prior studies on quasi-one-dimensional
spiral and spatially anisotropic triangular antiferromagnets
by maintaining proper treatment of Green’s functions and
achieving a systematic ranking of different 1/S contributions.
These detailed calculations provide a guide for experimental
observation of the effects of magnon interaction and decays
as well as a direct analytical scheme to predict the spin
dynamics for realistic single-crystalline materials. Moreover,
the inclusion of the momentum-integrated dynamical structure
factor provides a guide for observations in materials for which
only powder samples are available. Thus, this work presents
the full landscape of the nonlinear spin-wave dynamics in the
triangular lattice Heisenberg antiferromagnet.
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APPENDIX: SUBLEADING CORRECTIONS TO THE
STRUCTURE FACTOR AND DERIVATION OF S zz

1. Anomalous terms in the transverse structure factor

Here we evaluate the contribution from the anomalous
Green’s function G12(k,ω) to the transverse structure factor.
The Green’s functions can be expressed explicitly from (12) as

G11(q,ω) = 1

[ω − εq − 
11(q,ω)]
,

G12(q,ω) = −
12(q,ω)

[ω − εq − 
11(q,ω)][ω + εq + 
11(−q, − ω)]
.

(A1)

As discussed in Sec. III A, the unphysical mode needs to
be controlled by keeping the source term in (13) on-shell.
This form of the self-energies is used in all our numerical
evaluations. The relative role of the normal and anomalous
Green’s functions is estimated through their respective spectral
functions,

A11,12(q,ω) = − 1

π
Im[G11,12(q,ω)], (A2)

plotted for representative high-symmetry points in Fig. 8. The
dominant contribution comes from A11(q,ω), while A12(q,ω)
yields a much smaller contribution already for S = 1/2.
In addition, its contributions are also redundant to that of

FIG. 8. (Color online) (a–c) Energy dependence of the contri-
butions to the spectral function for S = 1/2 at the M, Y, and Y1 q
points; see Fig. 1(b). Solid lines with shaded (gray) area correspond
to A11(q,ω), and dashed lines to A12(q,ω). The contributions from
A11(−q, − ω) are vanishingly small.

A11(q,ω) in terms of qualitative features. Overall, we conclude
that the contribution from A12(q,ω) is small and that from
A11(−q, − ω) is 0 away from the K point, so that they both
can be neglected in (10).

2. Longitudinal fluctuations

We begin the derivation of Szz(q,ω) with the expression for
the longitudinal spin fluctuations in (15). At zero temperature,
Szz(q,ω) is related to the time-ordered Green’s function by

Gzz(q,t) = −i
〈
T δSz

q(t)δSz
−q

〉

= − i

N

∑
k1,k2

〈
T a

†
k1

(t)ak1+q(t)a†
k2

ak2−q
〉
. (A3)

This correlator probes the two-particle density of states and
thus provides information about the two-magnon continuum.

The longitudinal component of the structure factor is of the
order of O(1/S), a factor of 1/S smaller than the leading terms
in the transverse correlation function (10). Then, in the spirit
of the 1/S expansion, Gzz in (A3) can be calculated without
taking into account interaction corrections.

Performing Bogolyubov transformation in (A3) and keep-
ing terms only with two creation and two annihilation
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operators, we obtain

Gzz(q,t)

= i
∑

k

(ukuk+q + vkvk+q)2G(k, − t)G(k + q,t)

+ i

2

∑
k

(ukvk+q + vkuk+q)2G(k, − t)G(−k − q, − t)

+ i

2

∑
k

(ukvk−q + vkuk−q)2G(k,t)G(−k + q,t),

(A4)

where G = G11 for brevity. Subsequent transformation to ω

representation shows that the first two terms in (A4) have no
imaginary part in the noninteracting approximation. Hence,
the leading contribution to the longitudinal structure factor is
given by the last term:

Szz(q,ω) = 1

2π

∑
k

(ukvk−q + vkuk−q)2

× Im
∫

dω′

2πi
G(k,ω′)G(−k + q,ω − ω′). (A5)

The remaining integral can be taken for G(k,ω) = G0
11(k,ω)

to yield Eq. (16).
To improve on the linear SWT approximation, one can use

(A5) with the interacting Green’s functions. In such an approx-
imation the single-magnon energies will be renormalized by
interactions, while still neglecting other effects of interactions
in the correlation function.

3. Mixed transverse-longitudinal fluctuations

Here we provide a few remarks concerning the mixed
transverse-longitudinal correlators. We use the identity

i[Sxz(q,ω) − Szx(q,ω)] = − 1

π
Im {Gxz(q,ω) − Gzx(q,ω)},

(A6)

where the corresponding Green’s functions are defined as

Gxz(q,t) = 〈
T Sx

q (t)Sz
−q

〉
, Gzx(q,t) = 〈

T Sz
q(t)Sx

−q

〉
. (A7)

The above identity is derived by applying the fluctuation
dissipation theorem, (7), to time-dependent fluctuations of
the operator Â = Sx

q − iSz
q (with Â† = Sx

−q + iSz
−q) and ex-

cluding parts that are diagonal in spin indices, which have
been considered before. Using bosonic representation for spin
operators we obtain

Gxz(q,t) = −(1 − �+)

√
S

2N

∑
k

〈T [aq(t) + a
†
−q(t)]a†

kak−q〉

(A8)

and a similar expression for Gxz(q,t).
The first nonzero contribution to the mixed Green’s func-

tions comes from the first-order perturbation term in the three-
particle interaction V̂3. This means that the mixed correlator
gives an O(1/S) contribution compared to the transverse
structure factor, (10), and is, formally, of the same 1/S order as
Szz (16). Keeping terms that are nonzero in the noninteracting
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FIG. 9. (Color online) (a–c) Energy dependence of the total dy-
namical structure factorS tot(q,ω) = Sdiag(q,ω) + Smix(q,ω) [Eq. (5);
dashed lines] compared to the diagonal part [solid lines with shaded
(gray) areas] for S = 1/2 at representative q points M, Y, and Y1.
Results are convoluted with a Gaussian profile of width σ = 0.03J

as in Fig. 3.

limit and performing standard calculations we obtain

Gxz(q,ω)

= −3S
√

3

4
(1 − �+)(uq + vq)

∑
k

(ukvq−k + vkuq−k)

×
{
G(q,ω)

[
Ṽ31(k; q)

ω − εk − εq−k + i0
+ Ṽ32(−k,q)

ω + εk + εq−k

]

+G(−q, − ω)

[
Ṽ32(k, − q)

ω − εk − εq−k + i0
+ Ṽ31(−k; −q)

ω + εk + εq−k

]}
,

(A9)

while Gzx(q,ω) = −Gxz(q,ω). In Eq. (A9), Ṽ31(k; q) and
Ṽ32(k,q) are the dimensionless cubic vertices from Ref. 11.
The final expression for the mixed dynamical structure factor
of Eq. (5) reads

Smix(q,ω) = i[Sxz(q − Q,ω) − Sxz(q + Q,ω)], (A10)

where iSxz(q,ω) = −(1/π )Im[Gxz(q,ω)], with Gxz from
(A9). For the calculations presented in Fig. 9, the Green’s
functions are taken as G(q,ω) = G11(q,ω) from Eq. (12),
with 
11(q,ω) given by Eq. (13). In this approximation,
the single- and the two-magnon contributions to the mixed
structure factor are evaluated with the same accuracy as in the
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transverse and the longitudinal components Sxx , Syy and Szz

in (14) and (16), respectively. Because of the nature of our
calculations, higher order 1/S terms are not self-consistently
accounted for, leading to an unphysical overcompensation in
Fig. 9(c), where a small portion of S tot(q,ω) is slightly below
0, presumably an O(1/S2) effect.

Because of the contributions having opposite signs in (A9),
it can be anticipated that Smix yields a subleading correction
to the transverse S⊥ in (10) and to the two-magnon continuum
SL in (16) despite Szz and Sxz being formally of the same
1/S order. This is confirmed in Fig. 9, where Eq. (5) is used to
evaluate Sdiag and Smix in the total dynamical structure factor
S tot = Sdiag + Smix.

First, the impact of Smix on the dominant peaks in Sdiag

is vanishingly small, showing that the mixed terms do not

affect the leading quasiparticle-like part of the spectrum. Then
we observe that some of the edge singularities in S tot are
enhanced, while some are suppressed, by the inclusion of the
mixed term, suggesting that the latter would not yield an overall
regularization of such singularities. The primary effect of Smix

is a modulation of a relatively small part of the broad two-
magnon continuum in Sdiag.

Most importantly, the contribution from Smix(q,ω) to
the momentum-integrated structure factor S(ω) is ex-
actly 0 due to the antisymmetric properties of Sxz(q,ω)
discussed above. Therefore, we conclude that the off-
diagonal term Smix can be neglected compared to the
leading transverse S⊥ and longitudinal SL terms in Sdiag.
This strongly justifies the choice S tot ≈ Sdiag used in
Secs. II and III.
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